Skip to main content

Abstract

The interface and interfacial regions in multiphase systems arc of prime importance because they have a direct impact on the physical, mechanical, and chemical properties of the material such as fracture response, impact strength, adhesion, and gas or small molecule permeability. Interfaces are important not just in polymer blends and composites hut also in laminates. multilayer coatings, rubber-toughened materials and semicrystalline polymers. The characterization of the structure and dynamics of interfaces offers numerous challenges. In terms of structure, molecular composition and the distribution of chain ends at the interface are of interest. Questions of dynamics include the kinetics of interface formation during melt processing, melt bonding, solution coating, or latex coalescence. At the molecular level these kinetic processes depend on the dynamics of chain interdiffusion, and physical entanglement dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced NMR of dilute spins in solids, J Chem. Phys. 59: 569 (1973).

    Article  CAS  Google Scholar 

  2. S. R. Hartmann and E. L. Hahn, Nuclear double resonance in the rotating frame, Ph_vs. Rev. (1962).

    Google Scholar 

  3. J. Schaefer, R. A. McKay, and E. O. Stejskal, Double cross-polarization in solids, J: Magi?. Reson. 34: 443 (1979).

    CAS  Google Scholar 

  4. W. S. Veeman, NMR investigation of interfaces in polymer composites, Conway. Interfaces 2: 389 (1994).

    CAS  Google Scholar 

  5. A. W. Overhauser, Polarization of nuclei in metals, Phy.s. Rev. 92: 411 (1953).

    Article  CAS  Google Scholar 

  6. A. Abragam and W. G. Proctor, Une nouvelle methode de polarisation dynamique des noyaux atomiques dans les solides, Cornp. Rend. Acad. Sci. 246: 2253 (1958).

    CAS  Google Scholar 

  7. R. A. Wind, M. J. Duijvenstijn, C. van der Lugt, A. Manenschijn, and J. Vriend, Applications of DNP in 13C NMR in solids, Prog. Noel. Mage. Renon. Spectrosc. 17: 33 (1985).

    Article  CAS  Google Scholar 

  8. M. Afeworki, R. A. McKay. and J. Schaefer, DNP enhanced NMR of polymer-blend interfaces, Mater. Sci. Eng. A162: 221 (1993).

    Article  Google Scholar 

  9. D. L. VanderHart and G. B. McFadden, Some perspectives on the iterpretation of proton NMR spin-diffusion data in terms of polymer morphologies, Solid State Noel. Magn. Reson. 7: 45 (1996).

    Article  CAS  Google Scholar 

  10. J. Fraissard and T. Ito, 139Xe NMR study of adsorbed xenon: A new method for studying zeolites and metal zeolites, Zeolites 8: 350 (1988).

    Article  CAS  Google Scholar 

  11. J. H. Walton, J. B. Miller, C. M. Roland, and J. B. Nagode, Phase transitions in polymer blends via I - Xe NMR spectroscopy. Macromolecules 26: 452 (1993).

    Article  Google Scholar 

  12. M. Tomaselli, B. H. Meier, P. Robyr, U. W. Suter, and R. R. Ernst, Probing microheterogeneity in polymer systems via two-dimensional I29xenon NMR spy detection; Chem. Phvs. Lett. 205: 145 (1993).

    Article  CAS  Google Scholar 

  13. J. R. Havens and D. L. VanderHart, Morphology of poly(ethyleneterephthalate) fibers as studied by multiple pulse proton NMR, Macromolecules 18: 1663 (1985).

    Article  CAS  Google Scholar 

  14. D. L. VanderHart and F. Khoury, Quantitative determination of the monoclinic crystalline phase content in polyethylene by 13C NMR, Polymer 25: 1589 (1984).

    Article  CAS  Google Scholar 

  15. N. Zumbulyadis and J. M. O’Reilly, Intermolecular proton-deuterium polarization transfer in magic angle spinning NMR spectra: A new spectroscopic tool for interfaces, J. Am. Chem. Soc. 115: 4407 (1993).

    Article  CAS  Google Scholar 

  16. N. Zumbulyadis, C. J. T. Landry, and T. E. Long, The determination of polymer miscibility by proton-deuterium CP/MAS NMR spectroscopy. Macromolcctilcc 26: 2647 (1993).

    Article  CAS  Google Scholar 

  17. N. Zumbulyadis. A simple model for deuterium cross-polarization magic-angle spinning nuclear magnetic resonance at the interphases of amorphous materials, Solid Stale Nucl. Magn. Re.cou. 5: 3 (1995).

    Article  CAS  Google Scholar 

  18. N. Zumbulyadis, M. R. Landry, and T. P. Russell. Interphase mixing in symmetric diblock copolymers determined by proton-deuterium CP/MAS NMR, Macromolecules 29: 2201 (1996).

    Article  CAS  Google Scholar 

  19. S. H. Anastasiadis, T. P. Russell, S. K. Satija. and C. F. Majkrzak, The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J Chem. Pin’s. 92: 5677 (1990).

    Article  CAS  Google Scholar 

  20. D. W. Sindorf and G. E. Maciel, 29Si CP/MAS NMR studies of methylchlorosilane reactions on silica gel, J. Arrt. Chem. Soc. 103: 4263 (1981).

    Article  CAS  Google Scholar 

  21. N. Zumbulyadis and J. M. O’Reilly, Polarization transfer across interfaces. 1. 29Si cross polarization dynamics at the poly(vinylalcohol)-silica-sol-gel interface, Macromolecules 24: 5294 (1991).

    Article  CAS  Google Scholar 

  22. W. Happer, Optical pumping, Rev. Mod. Ph’s. 44: 169 (1972).

    Article  CAS  Google Scholar 

  23. M. Gatzke, G. D. Cates. B. Driehuys, D. Fox, W. Happer, and B. Saam, Extraordinarily slow nuclear spin relaxation in frozen laser-polarized I29Xe, Pin ‘s. Rev. Lett. 70: 690 (1993).

    Article  CAS  Google Scholar 

  24. H. W. Long, H. C. Gaede, J. Shore, L. Reven, C. R. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, P. Tang, and J.A. Reimer, High-field cross-polarization NMR from laser-polarized xenon to a polymer surface, J. Am. Chem. Soc. 115: 8491 (1993).

    Article  CAS  Google Scholar 

  25. O. Gonen. and J. S. Waugh, NMR relaxation mechanisms and line widths in insulators below 1 K. Phrsica A 156: 219 (1989).

    Article  CAS  Google Scholar 

  26. J. A. Sidles. Folded Stern-Gerlach experiment as a means of detecting nuclear magnetic resonance in individual nuclei, Phrs. Rev. Lett 68: 1124 (1992).

    Article  Google Scholar 

  27. K. Wago, O. Zuger, R. Kendrick, C. S. Yannoni, and D. Rugar, Low-temperature magnetic resonance force detection, J. Vac. Sci. Technol. B 14:1197 (1996) and references cited therein.

    Google Scholar 

  28. M. G. Zysmilich. and A. McDermott, Natural abundance solid-state carbon NMR studies of photosynthetic reaction centers with photoinduced polarization, Proc. Nat. Acad. Sci. USA 93: 6857 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zumbulyadis, N., Landry, C.J.T. (1997). Solid State NMR Studies of Polymer Interfaces. In: Lohse, D.J., Russell, T.P., Sperling, L.H. (eds) Interfacial Aspects of Multicomponent Polymer Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5559-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5559-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3284-6

  • Online ISBN: 978-1-4757-5559-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics