Skip to main content

The Rationale for Human Selective Brain Cooling

  • Chapter
Intensive Care Medicine

Abstract

Human selective brain cooling seems to have received relatively little attention from clinicians although it is pertinent to a number of specialities. This is possibly because much of the research has been undertaken in the field of thermal physiology in animals and volunteers, and the relevance of this to clinical practice has not been perceived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brengelmann GL (1993) Specialized brain cooling in humans? FASEB J 7: 1148–1153

    PubMed  CAS  Google Scholar 

  2. Cabanac M (1993) Selective brain cooling in humans: “fancy” or fact? FASEB J 7: 1143–1146

    PubMed  CAS  Google Scholar 

  3. Zenker W, Kubik S (1996) Brain cooling in humans — anatomical considerations. Anat Embryol (Berl) 193: 1–13

    Article  CAS  Google Scholar 

  4. Cabanac M, Caputa M (1979) Natural selective cooling of the human brain: evidence of its occurrence and magnitude. J Physiol 286: 255–264

    PubMed  CAS  Google Scholar 

  5. Cabanac M, Brinnel H (1985) Blood flow in the emissary veins of the human head during hyperthermia. Eur J Appl Physiol Occup Physiol 54: 172–176

    Article  PubMed  CAS  Google Scholar 

  6. du Boulay GH, Lawton M, Wallis A (1998) The story of the internal carotid artery of mammals: from Galen to sudden infant death syndrome. Neuroradiology 40: 697–703

    Article  PubMed  CAS  Google Scholar 

  7. du Boulay G, Lawton M, Wallis A (2000) Selective brain cooling in animals: internal carotid’s significance for sudden infant death syndrome. Ambulatory Child Health 6 (suppl 1): 36–38

    Article  Google Scholar 

  8. McIntosh DN, Zajonc RB, Vig PS, Emerick SW (1997) Facial movement, breathing, temperature, and affect: implications of the vascular theory of emotional efference. Cognition and Emotion 11: 171–195

    Article  Google Scholar 

  9. Baker MA (1982) Brain cooling in endotherms in heat and exercise. Annu Rev Physio 44: 85–96

    Article  CAS  Google Scholar 

  10. Niinimaa V, Cole P, Mintz S, Shepard RJ (1980) The switching point from oral to oronasal breathing. Respir Physiol 42: 61–71

    Article  PubMed  CAS  Google Scholar 

  11. Falk D (1992) Braindance. Henry Holt and Co, New York

    Google Scholar 

  12. Hall RL, Hall DA (1995) Geographic variation of native people along the Pacific Coast. Hum Biol 67: 407–426

    PubMed  CAS  Google Scholar 

  13. Carey JW, Steegmann AT (1981) Human nasal protrusion, latitude, and climate. Am J Phys Anthropol 56: 313–319

    Article  PubMed  CAS  Google Scholar 

  14. Wolpoff MH (1969) Climatic influence on the skeletal nasal aperture. Am J Phys Anthropol 29: 405–424

    Article  Google Scholar 

  15. Koertvelyessy T (1972) Relationships between the frontal sinus and climatic conditions: a skeletal approach to cold adaptation. Am J Phys Anthropol 37: 161–172

    Article  PubMed  CAS  Google Scholar 

  16. Shea BT (1977) Eskimo craniofacial morphology, cold stress and the maxillary sinus. Am J Phys Anthropol 47: 289–300

    Article  PubMed  CAS  Google Scholar 

  17. Hayward JN, Baker MA (1969) A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res 16: 417–440

    Article  PubMed  CAS  Google Scholar 

  18. Cabanac M, Germain M, Brinnel H (1987) Tympanic temperatures during hemiface cooling. Eur J Appl Physiol Occup Physiol 56: 534–539

    Article  PubMed  CAS  Google Scholar 

  19. Caputa M, Perrin G, Cabanac M (1978) Ecoulement sanguin réversible dans la veine ophthalmique: mécanisme de refroidissement sélectif du cerveau humain. C R Acad Sci 287: D1011 - D1014

    Google Scholar 

  20. Hirashita M, Shido O, Tanabe M (1992) Blood flow through the ophthalmic veins during exercise in humans. Eur J Appl Physiol 64: 92–97

    Article  CAS  Google Scholar 

  21. Caputa M, Cabanac M (1988) Precedence of head homoeothermia over trunk homoeothermia in dehydrated men. Eur J Appl Physiol 57: 611–615

    Article  CAS  Google Scholar 

  22. Nagasaka T, Brinnel H, Hales JR, Ogawa T (1998) Selective brain cooling in hyperthermia: the mechanisms and medical implications. Med Hypotheses 50: 203–211

    Article  PubMed  CAS  Google Scholar 

  23. Eckenhoff JE (1970) The physiologic significance of the vertebral venous plexus. Surg Gynecol Obstet 131: 72–78

    PubMed  CAS  Google Scholar 

  24. Dean MC (1988) Another look at the nose and the functional significance of the face and nasal mucous membrane for cooling the brain in fossil hominids. J Human Evolution 17: 715–718

    Article  Google Scholar 

  25. Gray RF, Hawthorne M (1992) Synopsis of Otolaryngology, 5th ed. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  26. Cole P (1982) Modification of inspired air. In: Proctor DF, Andersen IB (eds) The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical Press, Oxford, pp 351–370

    Google Scholar 

  27. White MD, Cabanac M (1995) Nasal mucosal vasodilatation in response to passive hyperthermia in humans. Eur J Appl Physiol Occup Physiol 70: 207–212

    Article  PubMed  CAS  Google Scholar 

  28. Eccles R (1982) Neurological and pharmacological considerations. In: Proctor DF, Andersen IB (eds) The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical Press, Oxford, pp 191–214

    Google Scholar 

  29. Irlbeck D (1998) Normal mechanisms of heat and moisture exchange in the respiratory tract. Respir Care Clin North Am 4: 189–98

    CAS  Google Scholar 

  30. Drake-Lee A (1997) The physiology of the nose and paranasal sinuses. In: Gleeson M (ed) Scott-Brown’s Otolaryngology: Vol 1 Basic Sciences (6th ed). Butterworth-Heinemann Ltd, Oxford, pp 1/6/1–1/6/21

    Google Scholar 

  31. Houdas Y, Ring E (1982) Human Body Temperature: Its Measurement and Regulation. Plenum Press, New York

    Google Scholar 

  32. Djupesland MD, Chatkin JM, Qian W, Haight JS (2001) Nitric oxide in the nasal airway: a new dimension in otorhinolaryngology. Am J Otolaryngol 22: 19–32

    Article  PubMed  CAS  Google Scholar 

  33. Cole P (1982) Upper respiratory airflow. In: Proctor DF, Andersen IB (eds) The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical, Oxford, pp 163–182

    Google Scholar 

  34. Proctor D (1982) The upper airway. In: Proctor DF, Andersen IB (eds) The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical Press, Oxford, pp 23–44

    Google Scholar 

  35. Mariak Z, White MD, Lewko J, Lyson T, Piekarski P (1999) Direct cooling of the human brain by heat loss from the upper respiratory tract. J Appl Physiol 87: 1609–1613

    PubMed  CAS  Google Scholar 

  36. Mariak Z, Jadeszko M, Lewko J, Lebkowski W, Lyson T (1998) No specific brain protection against thermal stress in fever. Acta Neurochir (Wien) 140: 585–590

    Article  CAS  Google Scholar 

  37. Webb AR, Shapiro MJ, Singer M, Suter PM (1999) Hyperthermia and pyrexia. In: Oxford Textbook of Critical Care. Oxford University Press, New York, pp 796–811

    Google Scholar 

  38. Cabanac M (1998) Selective brain cooling and thermoregulatory set point. J Basic Clin Physiol Pharmacol 9: 3–13

    Article  PubMed  CAS  Google Scholar 

  39. Kluger MJ (1994) Fever and antipyresis. In: Zeisberger E, Schönbaum E, Lomax P (eds) Thermal Balance in Health and Disease: Recent Basic Research and Clinical Progress. Advances in Pharmacological Sciences Series. Birkhäuser Verlag, Basel, pp 342–52

    Google Scholar 

  40. Maloney SK, Fuller A, Mitchell G, Mitchell D (2001) Rectal temperature measurement results in artefactual evidence of selective brain cooling. Am J Physiol 281: R108–114

    CAS  Google Scholar 

  41. Kuhnen G (1994) Selective brain cooling during fever? In: Zeisberger E, Schönbaum E, Lomax P (eds) Thermal Balance in Health and Disease: Recent Basic Research and Clinical Progress. Advances in Pharmacological Sciences Series. Birkhäuser Verlag, Basel, pp 353–358

    Chapter  Google Scholar 

  42. Berridge KC, Zajonc RB (1991) Hypothalamic cooling elicits eating: differential effects on motivation and pleasure. Psycholog Sci 2: 184–189

    Article  Google Scholar 

  43. Zajonc RB, Murphy ST, Inglehart M (1989) Feeling and facial efference: implications of the vascular theory of emotions. Psychol Rev 96: 395–416

    Article  PubMed  CAS  Google Scholar 

  44. L’Hoir MP, Engelberts AC, van Well GTJ, et al (1999) Dummy use, thumb sucking, mouth breathing and cot death. Eur J Pediatr 158: 896–901

    Article  PubMed  Google Scholar 

  45. Mitchell EA, Taylor BJ, Ford RP, et al (1993) Dummies and the sudden infant death syndrome. Arch Dis Child 68: 501–504

    Article  PubMed  CAS  Google Scholar 

  46. Fleming PJ, Blair PS, Bacon C, et al (1996) Environment of infants during sleep and risk of the sudden infant death syndrome; results of 1993–5 case-control study for confidential inquiry into stillbirths and deaths in infancy. Br Med J 313: 191–195

    Article  CAS  Google Scholar 

  47. Arnestad M, Anderson M, Rognum TO (1997) Is the use of dummy or carry-cot of importance for sudden infant death? Eur J Paediatr 156: 968–970

    Article  CAS  Google Scholar 

  48. Stradling JR (1996) The upper respiratory tract. In: Weatherall DJ, Ledingham JGG, Warrell DA (eds) The Oxford Textbook of Medicine. Vol. 2. (3rd ed) Oxford University Press, Oxford, pp 2609–2612

    Google Scholar 

  49. Dietrich WD (1992) The importance of brain temperature in cerebral injury. J Neurotrauma 9: S475 - S485

    PubMed  Google Scholar 

  50. Barone FC, Feuerstein GZ, White RF (1996) Brain cooling during transient focal ischemia provides complete neuroprotection. Neurosci Biobehav Rev 21: 31–44

    Article  Google Scholar 

  51. Clifton GL, Miller ER, Choi SC, et al (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344: 556–563

    Article  PubMed  CAS  Google Scholar 

  52. Clardy CW, Edwards KM, Gay JC (1985) Increased susceptibility to infection in hypothermic children: possible role of acquired neutrophil dysfunction. Pediatr Infect Dis 4: 379–382

    Article  PubMed  CAS  Google Scholar 

  53. Schubert A (1995) Side effects of mild hypothermia. J Neurosurg Anesthesiol 7: 139–147

    Article  PubMed  CAS  Google Scholar 

  54. Mellergârd P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31: 671–677

    Article  PubMed  Google Scholar 

  55. Corbett RJT, Laptook AR (1998) Failure of localized head cooling to reduce brain temperature in adult humans. NeuroReport 9: 2721–2725

    Article  PubMed  CAS  Google Scholar 

  56. Kilpatrick MM, Lowry DW, Firlik AD, Yonas H, Marion DW (2000) Hyperthermia in the neurosurgical intensive care unit. Neurosurgery 47: 850–856

    Article  PubMed  CAS  Google Scholar 

  57. Ginsberg MD, Busto R (1998) Combating hyperthermia in acute stroke: a significant clinical concern. Stroke 29: 529–534

    Article  PubMed  CAS  Google Scholar 

  58. Jones PA, Andrews PJ, Midgley S, et al (1994) Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6: 4–14

    PubMed  CAS  Google Scholar 

  59. Reith J, Jorgensen HS, Pedersen PM, et al (1996) Body temperature in acute stoke: relation to stroke severity, infarct size, mortality, and outcome. Lancet 347: 422–425

    Article  PubMed  CAS  Google Scholar 

  60. Mariak Z (1999) How does the immune system communicate with the brain? Neurologica I Neurochirurgia Polska 33: 665–674

    CAS  Google Scholar 

  61. Zeisberger E, Roth J (1993) Neurobiological concepts of fever generation and suppression. Neuropsychobiology 28: 106–109

    Article  PubMed  CAS  Google Scholar 

  62. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71: 93–127

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, B.A., Andrews, P.J.D. (2002). The Rationale for Human Selective Brain Cooling. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_66

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics