Skip to main content

New Light on Volume Therapy in the Critically Ill?

  • Conference paper
Book cover Intensive Care Medicine
  • 328 Accesses

Abstract

Hypovolemia is extremely common among intensive care unit (ICU) patients. Fluid deficits in the ICU patient can occur in the absence of obvious fluid loss secondary to vasodilation or generalized alterations of the endothelial barrier resulting in diffuse capillary leak. Patients with sepsis/septic shock, in particular, often show large fluid deficits. Sepsis is characterized by a pan-endothelial injury with subsequent development of increased endothelial permeability, loss of proteins, and interstitial edema [1, 2] leading to fluid shift from the intravascular to the interstitial compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morisaki H, Sibbald WJ (1993) Issues in colloid and transfusion therapy of sepsis. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 357–372

    Google Scholar 

  2. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM (1985) Increased vascular permeability: a major cause of hypalbuminaemia in disease and injury. Lancet i: 781–784

    Google Scholar 

  3. Deane SA, Gaudry PL, Woods P, et al (1988) The management of injuries–a review of death in hospital. Aust NZ J Surg 58: 463–469

    Article  CAS  Google Scholar 

  4. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine (1999) Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Crit Care Med 27: 639–660

    Article  Google Scholar 

  5. Miletin MS, Steweart TE, Norton PG (2002) Influences on physicians’ choices for intravenous colloids. Intensive Care Med 28: 917–924

    Article  PubMed  Google Scholar 

  6. Hillman K, Bishop G, Bristow P (1997) The crystalloid versus colloid controvery: present status. Balliere’s Clin Anaesth 11: 1–13

    Article  Google Scholar 

  7. Ruttmann TG, James MFM, Finlayson J (2002) Effects on coagulation of intravenous crystalloid or colloid in patients untergoing peripheral vascular surgery. Br J Anaesth 89: 226–230

    Article  PubMed  CAS  Google Scholar 

  8. Ruttmann TG, James MFM, Lombard EM (2001) Haemdilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to predilution concentrations. Anaesth Intensive Care 29: 489–493

    PubMed  CAS  Google Scholar 

  9. Ng KFJ, Lam CCK, Chan LC (2002) In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth 88: 475–480

    Article  PubMed  CAS  Google Scholar 

  10. Boldt J, Haisch G, Suttner S, Kumle B, Schellhaas A (2002) Are lactated Ringer’s solution and normal saline solution equal with regard to coagulation? Anesth Analg 94: 378–384

    PubMed  CAS  Google Scholar 

  11. Janvrin SB, Davies G, Greenhalgh RM (1980) Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg 67: 690–693

    Article  PubMed  CAS  Google Scholar 

  12. deJonge E, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29: 1261–1267

    Article  CAS  Google Scholar 

  13. Treib J, Haass A, Pindur G, et al (1996) All medium starches are not the same: influence of hydroxyethyl substitution of hydroxyethyl starch on plasma volume, hemorrheologic conditions, and coagulation. Transfusion 36: 450–455

    Article  PubMed  CAS  Google Scholar 

  14. Stögermüller B, Stark J, Willschke H, Felfernig M, Hoerauf K, Kozek-Langenecker SA (2000) The effect of hydroxyethylstarch 200 kDa on platelet function. Anesth Analg 91: 823–827

    Article  PubMed  Google Scholar 

  15. Jamnicki M, Bombelli T, Seifert B, et al (2000) Low-and medium-molecular-weight hydroxyethylstarches–comparison of their effects on blood coagulation. Anesthesiology 93: 1231–1237

    Article  PubMed  CAS  Google Scholar 

  16. Wilkes NJ, Woolf RL, Powanda MC, et al (2002) Hydroxyethyl starch in balanced electrolyt solution (Hextend®)–pharmacokinetic and pharmacodynamic profiles in healthy volunteers. Anesth Analg 94: 538–544

    Article  PubMed  CAS  Google Scholar 

  17. Gan TJ, Bennett-Guerrero E, Phillips-Bute B, et al (1999) Hextend®, a physiologically balanced plasma expander for large volume use in major surgery: a randomized phase III clinical trial. Anesth Analg 88. 992–998

    PubMed  CAS  Google Scholar 

  18. Mahla E, Lag T, Vicenzi M, et al (2001) Thrombelastography for monitoring prolonged hypercoagulability after major abdominal surgery. Anesth Analg 92: 572–577

    Article  PubMed  CAS  Google Scholar 

  19. Martin G, Bennett-Guerrero E, Wakeling H et al (2002) A prospective, randomized comparison of thrombelastographic coagulation profile in patients receiving lactated Rnger’s solution, 6% hetastarch in a balanced-saline vehicle, or 6% hydroxyethyl starch in saline during major surgery. J Cardiothorac Vasc Anesth 16: 441–446

    Article  PubMed  CAS  Google Scholar 

  20. Boldt J, Haisch G, Suttner S, Kumle B, Schellhaass F (2002) Effects of a new modified, balanced hydroxyethyl starch preparation (Hextend®) on measures of coagulation. Br J Anaesth 89: 722–728

    Article  PubMed  CAS  Google Scholar 

  21. Waitzinger J, Bepperling F, Pabst G, Opitz J, Müller M, Baron JF (1988) Pharmacokinetics and tolerability of a new hydroxyethylstarch (HES) specification (HES 130/0.4) after single-dose infusion of 6 or 10% solution in healthy volunteers. Clin Drug Invest 16: 151–160

    Article  Google Scholar 

  22. Franz A, Bräunlich P, Gamsjäger T, Felfernig M, Gustorff B, Kozek-Langenecker SA (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92: 1402–1407

    Article  PubMed  CAS  Google Scholar 

  23. Entholzner EK, Mielke LL, Calatzis AN, Feyh J, Hipp R, Hargasser SR (2000) Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0.4) compared to hydroxethyl starches with higher molecular weight. Acta Anaesthesiol Scand 44: 1116–1121

    Article  PubMed  CAS  Google Scholar 

  24. Haisch G, Boldt J, Krebs C, Kumle B, Suttner S, Schulz A (2201) The influence of intravascular volume therapy with a new hydroxyethyl starch preparation (6% HES 130/0.4) on coagulation in patients undergoing major abdominal surgery. Anesth Analg 92: 565–571

    Article  Google Scholar 

  25. Haisch G, Boldt J, Krebs C, et al (2001) The influence of a new hydroxyethyl starch preparation (6% HES 130/0.4) on coagulation in cardiac surgical patients. J Cardiothorac Vasc Anesth 15: 316–321

    Article  PubMed  CAS  Google Scholar 

  26. Langeron O, Doelberg M, Ang ET, Bonnet F, Capdevila X, Coriat P (2001) Voluven®, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5. Anesth Analg 92: 855–862

    Article  PubMed  CAS  Google Scholar 

  27. Huet RCGG, Siemons AW, Baus D, et al (2000) A novel hydroxyethyl starch (Voluven®) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth 47: 1207–1215

    Article  Google Scholar 

  28. De Labarthe A, Jacobs F, Blot F, et al (2001) Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med 111: 417–418

    Article  PubMed  Google Scholar 

  29. Peron S, Mouthon L, Guettier C, et al (2001) Hydroxyethyl starch-induced renal insufficiency after plasma exchange in a patient with polymyositis and liver cirrhosis. Clin Nephrol 55: 408–411

    PubMed  CAS  Google Scholar 

  30. Schortgen F, Lacherade JC, Bruneel F, et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicenter randomised study. Lancet 357: 911–916

    Article  PubMed  CAS  Google Scholar 

  31. Boldt J, Lehmann A, Römpert R, et al (2000) Volume therapy with a new hydroxyethyl starch solution in cardiac surgical patients before cardiopulmonary. J Cardiothorac Vasc Anesth 14: 264–268

    Article  PubMed  CAS  Google Scholar 

  32. Dehne MG, Mühling J, Sablotzki A, et al (2001) Hydroxyethylstarch ( HES) does not directly affect renal function in patients with no prior renal impairment. J Clin Anesth 13: 103–111

    Article  PubMed  CAS  Google Scholar 

  33. Funk W, Baldinger V (1995) Microcirculatory perfusion during volume therapy. Anesthesiology 82: 975–982

    Article  PubMed  CAS  Google Scholar 

  34. Wang P, Hauptman JG, Chaudry IH (1990) Hemorrhage produces depression in microvascular blood flow which persists despite fluid resuscitation. Circ Shock 32: 307–318

    PubMed  CAS  Google Scholar 

  35. Forrest DM, Baigorri F, Chittock DR, Spinelli JJ, Rusel JA (2000) Volume expansion using pentastarch does not change gastric-artial PCO2 gradient or gastric intramucosal pHi in patients who have sepsis syndrome. Crit Care Med 28: 2254–2258

    Article  PubMed  CAS  Google Scholar 

  36. Asfar P, Kerkeni N, Labadie F, Gouello JP, Brenet O, Alquier P (2000) Assessment of hemodynamic and gastric mucosal acidosis with modified fluid gelatin versus hydroxyethyl starch: a prospective, randomized study. Intensive Care Med 26: 1282–1287

    Article  PubMed  CAS  Google Scholar 

  37. Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93: 405–409

    PubMed  CAS  Google Scholar 

  38. Prough DS, Bidani A (1999) Hyperchloremic metabolic acidosis is a predictable consequences of intraoperative infusion of 0.9% saline. Anesthesiology 90: 1247–1249

    Article  PubMed  CAS  Google Scholar 

  39. Takil A, Eti Z, Irmak P, Gögüs Y (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated Ringer’s solution during major surgery. Anesth Analg 95: 294–298

    PubMed  CAS  Google Scholar 

  40. Rehm M, Orth V, Scheingraber S, Kreimeier U, Brechelsbauer H, Finsterer U (2000) Acid-base changes cause by 5% albumin versus 6% hydroxyethyl starch solution in patients undergoing acute normovolemic hemodilution. Anesthesiology 93: 1174–1183

    Article  PubMed  CAS  Google Scholar 

  41. Waters JH, Bernstein CA (2000) Dilutional acidosis following hetastarch or albumin in healthy volunteers. Anesthesiology 93: 1184–1187

    Article  PubMed  CAS  Google Scholar 

  42. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR (2001) Normal saline versus Ringer’s lactate solutions for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 93: 817–822

    Article  PubMed  CAS  Google Scholar 

  43. Wilkes NJ, Woolf R, Mutch M, et al (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93: 811–816

    Article  PubMed  CAS  Google Scholar 

  44. Schierhout G, Roberts I (1998) Fluid resuscitation with colloids or crystalloids in critically ill patients: a systematic review of randomised trials. Br Med J 316: 961–964

    Article  CAS  Google Scholar 

  45. Choi P, Yip G, Quinonez L, Cook D (1999) Crystalloids versus colloids in fluid resuscitation: A systematic review. Crit Care Med 27: 200–210

    Google Scholar 

  46. Alderson P, Schierhout G, Roberts I, Bunn F (2002) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD001208

    Google Scholar 

  47. Bunn F, Roberts I, Tasker R, Akpa E (2002) Hypertonic versus crystalloid fluid resuscitation in critically ill patients. Cochrane Database Syst Rev CD002045

    Google Scholar 

  48. Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN (1997) Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery 122: 609–616

    Article  PubMed  CAS  Google Scholar 

  49. Wilkes MM, Navickis RJ (2001) Patient survival after human albumin administration–a meta-analysis of randomized controlled trials. Ann Intern Med 135: 149–164

    Article  PubMed  CAS  Google Scholar 

  50. Astiz ME, Rackow EC (1999) Crystalloid-colloid controversy revisited. Crit Care Med 27: 34–35

    Article  PubMed  CAS  Google Scholar 

  51. Wilkes MM, Navickis RJ, Sibbald WJ (2001) Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. Ann Thorac Surg 72: 527–533

    Article  PubMed  CAS  Google Scholar 

  52. Cook D, Guyatt G (2001) Editorial: Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med 135: 205–208

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boldt, J. (2003). New Light on Volume Therapy in the Critically Ill?. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_56

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics