Skip to main content

Minimally Invasive Hemodynamic Monitoring

  • Conference paper
Intensive Care Medicine
  • 330 Accesses

Abstract

One of the most important goals of caring for critically ill patients is maintenance of adequate organ perfusion; as such, hemodynamic monitoring has become a cornerstone of critical care medicine. The ability to rapidly and accurately obtain and interpret hemodynamic parameters, as well as to manipulate these parameters according to clinical changes, remains a significant part of the intensivist’s practice. The primary parameters of interest to the intensivist are the physiologic markers of preload, afterload, and contractility as well as well as the balance between oxygen delivery (DO2) and utilization. Today the intensivist has a multitude of monitors to assist him in the hemodynamic monitoring of the patient. The pulmonary artery catheter (PAC) remains a popular method for obtaining such important hemodynamic information [1–3]. Some controversy regarding the risks and benefits of PAC use [2, 4] has caused the intensivist to look to other techniques of hemodynamic monitoring [1, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linton DM, Gilon DM (2002) Advances in noninvasive cardiac output monitoring. Ann Cardiac Anesth 5: 141–148

    Google Scholar 

  2. Connors Jr AF, Speroff T, Dawson NV, et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276: 889–897

    Article  PubMed  Google Scholar 

  3. Anonymous (1997) Pulmonary Artery Catheter Consensus Conference: consensus statement. Crit Care Med 25: 910–925

    Article  Google Scholar 

  4. Cusack RJ, Rhodes A (1997) Pulmonary artery catheter — to use or not to use; that is the question? Clin Intensive Care 11: 117–119

    Google Scholar 

  5. Berton C, Cholley B (2002) Equipment review: New techniques for cardiac output measurement — oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care 6: 216–221

    Article  PubMed  Google Scholar 

  6. Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25: 1796–1800

    Article  PubMed  CAS  Google Scholar 

  7. Linton RAF, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–266

    Article  PubMed  CAS  Google Scholar 

  8. Newman DG, Callister R (1999) The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med 70: 780–789

    PubMed  CAS  Google Scholar 

  9. Pianosi PT (1997) Impedance cardiography accurately measures cardiac output during exercise in patients with cystic fibrosis. Chest 111: 333–337

    Article  PubMed  CAS  Google Scholar 

  10. Blanch L, Fernandez R, Benito S, et al (1988) Accuracy of an indirect carbon dioxide Fick method in determination of the cardiac output in critically ill mechanically ventilated patients. Intensive Care Med 14: 131–135

    Article  PubMed  CAS  Google Scholar 

  11. Arnold JH, Stenz RI, Thompson JE, Arnold LW (1996) Noninvasive determination of cardiac output using single breath CO2 analysis. Crit Care Med 24: 1701–1705

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg P, Yancy CW (2000) Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol 15: 151–155

    Article  PubMed  CAS  Google Scholar 

  13. Von Rueden KT, Turner M (1999) Advances in continuous, noninvasive hemodynamic surveillance. Crit Care Nurs Clin North Am 11: 63–75

    Google Scholar 

  14. Shoemaker WC Belzberg H, Wo CC, et al (1998) Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114: 1643–1652

    Article  PubMed  CAS  Google Scholar 

  15. Summers RL, Kolb JC, Woodward LH, Galli RL (1999) Differentiating systolic from diastolic heart failure using impedance cardiography. Acad Emerg Med 7: 693–699

    Article  Google Scholar 

  16. Castor G, Klocke RK, Stoll M, et al (1994) Simultaneous measurement of cardiac output by thermodilution, thoracic elecrical bioimpedance and Doppler ultrasound. Br J Anaesth 72: 133–138

    Article  PubMed  CAS  Google Scholar 

  17. Burchell SA, Yu M, Takiguchi SA, et al (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25: 388–391

    Article  PubMed  CAS  Google Scholar 

  18. Tuman KJ, Gilbert CC, Ivankovich AD (1989) Pitfalls in interpretation of pulmonary artery catheter data. J Cardiothorac Anesth 3: 625–641

    Article  PubMed  CAS  Google Scholar 

  19. Kuntscher MV, Blome-Eberwein S, Pelzer M, Erdmann D, Germann G (2002) Transcardiopulmonary vs pulmonary arterial thermodilution methods for hemodynamic: monitoring of burned patients. J Burn Care Rehabil 23: 21–26

    Article  PubMed  Google Scholar 

  20. Antonutto G, Girardis M, Tuniz D, di Prampero PE (1995) Noninvasive assessment of cardiac output from arterial pressure profiles during exercise. Eur J Appl Physiol 72: 18–24

    Article  CAS  Google Scholar 

  21. Hirschl M, Kittler H, Woisetschlager C, et al (2000) Simultaneous comparison of thoracic bioimpedance and arterial pulse waveform-derived cardiac output with thermodilution measurement. Crit Care Med 28: 1798–1802

    Article  PubMed  CAS  Google Scholar 

  22. Kurita T, Morita K, Kato S, et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79: 770–775

    Article  PubMed  CAS  Google Scholar 

  23. Eremenko A, Balykov I, Chaus N, Kislukhin V, Krivitski N (1998) Use of an extracorporeal arteriovenous tubing loop to measure cardiac output in intensive care unit patients by ultrasound velocity dilution. ASAIO J 44: M462 - M464

    Article  PubMed  CAS  Google Scholar 

  24. Davis CC, Jones NL, Sealey BJ (1978) Measurements of cardiac output in seriously ill patients using a CO2 rebreathing method. Chest 73: 167–172

    Article  PubMed  CAS  Google Scholar 

  25. Barney J (1996) Thoracic electrical bioimpedance device. Crit Care Med 24: 1090–1091

    Article  PubMed  CAS  Google Scholar 

  26. Nakonezny PA, Kowalewski RB, Ernst JM, et al (2001) New ambulatory impedance cardiograph validated against the Minnesota Impedance Cardiograph. Psychophysiology 38: 465–473

    Article  PubMed  CAS  Google Scholar 

  27. Barin E, Haryadi DG, Schookin SI, et al (2000) Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med 28: 698–702

    Article  PubMed  CAS  Google Scholar 

  28. Van der Meer NJ, Vonk Noordegraaf A, Kamp O, de Vries PM (1999) Noninvasive measurement of cardiac output: two methods compared in patients with mitral regurgitation. Angiology 50: 95–101

    Article  PubMed  Google Scholar 

  29. Thangathurai D, Charbonnet C, Roessler P, et al (1997) Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vasc Anesth 11: 440–444

    Article  PubMed  CAS  Google Scholar 

  30. Zacek P, Kunes P, Kobzova E, Dominik J (1999) Thoracic electrical bioimpedance versus thermodilution in patients post open-heart surgery. Acta Medica (Hradec Kralove) 42: 19–23

    CAS  Google Scholar 

  31. Lee TL (1994) Pitfalls of Hemodynamic Monitoring. In: Faust RJ (ed) Anesthesiology Review, 2nd ed, Churchill Livingstone, New York, pp 263–264

    Google Scholar 

  32. Murray MJ, Coursin DB, Pearl RG, Prough DS (2002) Critical Care Medicine Perioperative Management 2nd Edition Lippincot, Williams & Wilkins, Philadelphia, pp 195–196

    Google Scholar 

  33. Tsagaropoulou AT, Vasiliadis K, Fessatidis I, Papavasi-Liou E, Spyrou P (2002) Beware Swan-Ganz complications. Perioperative management. J Cardiovasc Surg 43: 467–470

    Google Scholar 

  34. Brown J (2002) Use of echocardiography for hemodynamic monitoring. Crit Care Med 30: 1361–1364

    Article  PubMed  Google Scholar 

  35. Pinto FJ, Siegel LC, Chenzbraun A, et al (1994) Online estimation of cardiac output with a new automated border detection system using transesophageal echocardiography: A preliminary comparison with thermodilution. J Cardiothorac Vasc Anes 8: 625–630

    Article  CAS  Google Scholar 

  36. Greim CA, Roewer N, Laux G, et al (1996) Online estimation of left ventricular stroke volume using transoesophageal echocardiography and acoustic quantification. Br J Anaesth 77: 365–369

    Article  PubMed  CAS  Google Scholar 

  37. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307–310

    Article  PubMed  CAS  Google Scholar 

  38. Huntsman, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Nonivasive Doppler determination of cardiac output in man: clinical validation. Circulation 67: 593–602

    Article  PubMed  CAS  Google Scholar 

  39. Mark JB, Steinbrook RA, Gugino RD, et al (1986) Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg 65: 1013–1020

    Article  PubMed  CAS  Google Scholar 

  40. Perrino AC, Flemming J, LaMantia KR (1991) Transesophageal Doppler cardiac output monitoring: performance during aortic reconstrcuctive surgery. Anesth Analg 73. 705–710

    Article  PubMed  Google Scholar 

  41. Cariou M, Monchi M, Joly LM, et al (1998) Nonivasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med 26: 2066–2072

    Article  PubMed  CAS  Google Scholar 

  42. Laupland KB, Bands CJ (2002) Uility of esophageal Doppler as a minimally invasive hemodynamic monitor: a review Canadian. J Anesth 49: 393–401

    Google Scholar 

  43. Wesseling KH, deWitt B, Weber AP, et al (1983) A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys 5: 1–52

    Google Scholar 

  44. Chaney JC, Derdak (2002) Minimally invasive hemodynamic monitoring for the intensivist: current and emerging technologies. Crit Care Med 30: 2338–2345

    Google Scholar 

  45. Garcia-Rodriguez C, Pittman J, Cassel CH, et al (2002) Lithium dilution cardiac output measurement: a clinical assessment of central venous and peripheral venous indicator injection. Crit Care Med 30: 2199–2204

    Article  PubMed  CAS  Google Scholar 

  46. Doering L, Lum E, Dracup K, Friedman A (1995) Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 23: 1667–1673

    Article  PubMed  CAS  Google Scholar 

  47. Maric P, Pendelton J, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by thermodilution and ventricular angiography. Crit Care Med 25: 1545–1550

    Article  Google Scholar 

  48. Wong KL, Hou PC (1996) The accuracy of bioimpedance cardiography in the measurement of cardiac output in comparison with thermodilution method. Acta Anaesthesiology Sin 34: 55–59

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peruzzi, W.T., Gould, R., Brodsky, L. (2003). Minimally Invasive Hemodynamic Monitoring. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_49

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics