Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 25))

Abstract

Let f(t) be an arbitrary function defined on the interval 0 ≤ t < ∞; then

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiuaaGaayjkaiaawMcaaiabg2da9maapehabaGaamyzamaa % CaaaleqabaGaeyOeI0IaamiCaiaadshaaaGccaWGMbWaaeWaaeaaca % WG0baacaGLOaGaayzkaaGaamizaiaadshaaSqaaiaaicdaaeaacqGH % EisPa0Gaey4kIipaaaa!4802!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$F\left( P \right) = \int\limits_0^\infty {{e^{ - pt}}f\left( t \right)dt} $$
(1)

is the Laplace transform of f(t), provided that the integral exists. We shall confine our attention to functions f(t) which are absolutely integrable on any interval 0 ≤ t ≤ a, and for which F(α) exists for some real α. It may readily be shown that for such a function F(p) is an analytic function of p for Re(p) > α, as follows. First note that the functions

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aae % WaaeaacaWGWbGaaiilaiaadsfaaiaawIcacaGLPaaacqGH9aqpdaWd % XbqaaiaadwgadaahaaWcbeqaaiabgkHiTiaadchacaWG0baaaOGaam % OzamaabmaabaGaamiDaaGaayjkaiaawMcaaiaadsgacaWG0baaleaa % caaIWaaabaGaamivaaqdcqGHRiI8aaaa!4A10!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\phi \left( {p,T} \right) = \int\limits_0^T {{e^{ - pt}}f\left( t \right)dt} $$
(2)

are analytic in p, and then that φ(p,T) converges uniformly to F(p) in any bounded region of the p plane satisfying Re(p) > α, as T → ∞. It follows from a standard theorem on uniform convergence2 that F(p) is analytic in the half-plane Re(p) > α.

The results given in this section may be found in many places. We mention in particular DITKIN & PRUDNIKOV (1965), DOETSCH (1971), and WIDDER (1944).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. AHLFORS (1966), Ch. 5.

    Google Scholar 

  2. Many more general relationships may be found in ERDELYI, et al. (1954), Ch. 4.

    Google Scholar 

  3. Extensive tables of Laplace transforms are available; for instance, ERDELYI, et. al. (1954).

    Google Scholar 

  4. Anticipating the result that the Laplace transform has a unique inverse.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, B. (1978). Definition and Elementary Properties. In: Integral Transforms and Their Applications. Applied Mathematical Sciences, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5512-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5512-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90313-2

  • Online ISBN: 978-1-4757-5512-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics