Skip to main content

Experimental Investigations of Ultrasonic Cavitation

  • Chapter
High-Intensity Ultrasonic Fields

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

If cavitation is to be generated specifically for the purpose of doing useful work (cleaning of parts, dispersion of liquids and solids, etc.), one must know how to control the attendant cavitation processes. With this in mind it is little wonder that so many researchers have turned their attention to these effects in recent times. This is evidenced by the constantly growing number of publications both in the periodical literature and in separate book form. The cumulative wealth of theoretical and experimental material has prompted the publication of several survey papers in the last three years (e.g. [1–4]) on the topic of acoustic cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. Pernik, Problems of Cavitation, Sudpromgiz (1963).

    Google Scholar 

  2. E. Webster, Cavitation, Ultrasonics, 1: 39 (1963).

    Article  Google Scholar 

  3. H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W.P. Mason, ed.), Vol. 1B, Academic Press, New York (1964).

    Google Scholar 

  4. M. G. Sirotyuk, Ultrasonic cavitation (review), Akust. Zh., 8 (3): 255 (1962).

    Google Scholar 

  5. M. Kornfel’d, Elasticity and Strength of Liquids, Moscow-Leningrad (1951).

    Google Scholar 

  6. Ya. B. Zel’dovich, Theory of the formation of a new phase, cavitation, Zh. Éksp. Teor. Fiz., 12 (11–12): 525 (1942).

    Google Scholar 

  7. R. Esche, Untersuchung der Schwingungskavitation in Flüssigkeiten [Investigation of vibration-induced cavitation in liquids], Akust. Beih., 4: 208 (1952).

    Google Scholar 

  8. D. Messino, D. Sette, and F. Wanderligh, Statistical approach to ultrasonic cavitation, J. Acoust. Soc. Am., 35 (10): 1575 (1963).

    Article  Google Scholar 

  9. M. Strassberg, Onset of ultrasonic cavitation in tap water, J. Acoust. Soc. Am., 31 (2): 163 (1959).

    Article  Google Scholar 

  10. W. J. Galloway, An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., 26 (5): 849 (1954).

    Article  Google Scholar 

  11. V. A. Akulichev and V.I. Il’ichev, Spectral indication of the origin of ultrasonic cavitation in water, Akust. Zh., 9 (2): 158 (1963).

    Google Scholar 

  12. W. Connolly and F. E. Fox, Ultrasonic cavitation thresholds in water, J. Acoust. Soc. Am., 26 (5): 843 (1954).

    Article  Google Scholar 

  13. I. T. Alad’ev (ed.), Handbook: Problems in the Physics of Boiling, Izd. “Mir” (1964).

    Google Scholar 

  14. E. N. Harvey, R. D. McElroy, and A. H. Whiteley, On cavity formation in water, J. Appl. Phys., 18: 162 (1947).

    Article  Google Scholar 

  15. R. T. Knapp, Cavitation and nuclei, Trans. ASME, 80: 6 (1958).

    Google Scholar 

  16. F. G. Blake, Tech. Mem. Acoustics Res. Lab., Harvard Univ., Cambridge, No. 9 (1949).

    Google Scholar 

  17. Yu. A. Aleksandrov, G. S. Voronkov, V. M. Gorbunkov, N. B. Delone, and Yu. I. Nechaev, Bubble Chambers, Gosatomizdat (1963).

    Google Scholar 

  18. W. E. Whyberew, G. D. Kinzer, and R. Gunn, Electrification of small air bubbles in water, J. Geophys. Res., 57 (4): 453 (1952).

    Google Scholar 

  19. V. A. Akulichev, Hydration of ions and the cavitation resistance of water, Akust. Zh., 12 (2): 160 (1966).

    Google Scholar 

  20. D. Lieberman, Radiation-induced cavitation, Phys. Fluids, 2 (4): 466 (1959).

    Article  Google Scholar 

  21. D. Sette, Sonic cavitation and ionizing radiation, Proc. Third Internat. Congr. Acoustics, Stuttgart (1959), Vol. I, p. 330 (1961).

    Google Scholar 

  22. D. Sette and F. Wanderlingh, Nucleation by cosmic rays in ultrasonic cavitation, Phys. Rev., 125 (2): 409 (1962).

    Article  Google Scholar 

  23. M. Bertoletti and D. Sette, On nucleation processes in ultrasonic cavitation and bubble chambers, Proc. Fourth Internat. Congr. Acoustics, Copenhagen (1962), Paper J26.

    Google Scholar 

  24. R. Macleay and L. Holroyd, Space-time analysis of the sonoluminescence emitted by cavitated water, J. Appl. Phys., 32 (3): 449 (1961).

    Article  Google Scholar 

  25. B. E. Noltingk and E. A. Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 63B (9): 674 (1950);

    Google Scholar 

  26. B. E. Noltingk and E. A. Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 64B: 1032 (1951).

    Google Scholar 

  27. M. Minnaert, On musical air-bubbles and the sounds of running water, Phil. Mag., 16 (7): 235 (1933).

    Google Scholar 

  28. L. D. Rozenberg and M. G.Sirotyuk, Apparatus for the generation of focused ultrasound of high intensity, Akust. Zh., 5 (2): 206 (1959).

    Google Scholar 

  29. L. D. Rozenberg and M. G. Sirotyuk, A focusing radiator for the generation of superhigh-intensity ultrasound in 1 Mc, Akust. Zh., 9 (1): 61 (1963).

    Google Scholar 

  30. M. G. Sirotyuk, Cavitation strength of water and its distribution of cavitation nuclei, Akust. Zh., 11 (3): 380 (1965).

    Google Scholar 

  31. I. Schmid, Kinematographische Untersuchung der Einzelblasen-Kavitation [Motion picture investigation of the individual cavitation bubble], Acustica, 9 (4): 321 (1959).

    Google Scholar 

  32. A. T. Ellis, Techniques for pressure pulse measurements and high–speed photography in ultrasonic cavitation, Cavitation in Hydrodynamics, H.M.S.O., London (1956), 8–1–8–32; Discussion Cl–C3.

    Google Scholar 

  33. E. V. Romanenko, Miniature piezoelectric ultrasonic receivers, Akust. Zh., 4 (3): 342 (1957).

    Google Scholar 

  34. L. D. Rozenberg and M. G. Sirotyuk, Factors limiting the acoustic power of a transducer operating in a liquid, Collected Papers of the All-Union Sci. Tech. Conf. Application of Ultrasonics in Industry, Ultrasonic Instruments for Measurement and Inspection, Moscow (1960), p. 157.

    Google Scholar 

  35. L. D. Rozenberg, Einige physikalische Erscheinungen, die in hochintensiven Ultraschallfeldern entstehen [Some physical phenomena occurring in high-intensity ultrasonic fields], Fourth Internat. Congr. Acoustics, Copenhagen, Vol. 2, p. 179 (1962).

    Google Scholar 

  36. M. G.Sirotyuk,Behavior of cavitation bubbles at high ultrasonic intensities, Akust. Zh., 7(4):499 (1961).

    Google Scholar 

  37. G. A. Khoroshev, Collapse of vapor-air cavitation bubbles, Akust. Zh., 9 (3): 340 (1963).

    Google Scholar 

  38. Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).

    Google Scholar 

  39. V. A. Akulichev, Pulsations of cavitation bubbles in the field of an ultrasonic wave, Akust. Zh., 13 (2): 170 (1967).

    Google Scholar 

  40. I. G. Mikhailov and V. A. Shutilov, A simple technique for the observation of cavitation in a liquid, Akust. Zh., 5 (3): 376 (1959).

    Google Scholar 

  41. M. G. Sirotyuk, Energetics and dynamics, of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).

    Google Scholar 

  42. M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavita- tion at 500 kc, Akust. Zh., 8(2):216 (1962).

    Google Scholar 

  43. V. A. Akulichev, Experimental investigation of an elementary cavitation zone, Akust. Zh., 14 (3): 337 (1968).

    Google Scholar 

  44. G. W. Willard, Ultrasonically induced cavitation in water: a step-by-step process, J. Acoust. Soc. Am., 25 (4): 667 (1953).

    Article  MathSciNet  Google Scholar 

  45. W. Guth, The formation of pressure waves by cavitation, Cavitation in Hydrodynamics, H. M. S. O., London (1956), 6, VII-X.

    Google Scholar 

  46. V. F. Kazantsev, Motion of gas bubbles in a liquid under the action of the Bjerknes forces arising in an acoustic field, Dokl. Akad. Nauk SSSR, 129 (1): 74 (1959).

    Google Scholar 

  47. P. D. Jarmen and K. J. Taylor, Some physical effects of acoustically induced cavitation in liquid helium and liquid nitrogen, J. Acoust. Soc. Am., 39 (3): 584 (1966).

    Article  Google Scholar 

  48. I. N. Kanevskii, Steady forces arising in a sound field, Akust. Zh., 7 (1): 3 (1961).

    MathSciNet  Google Scholar 

  49. M. G. Sirotyuk, Energy balance of an acoustic field in the presence of cavitation, Akust. Zh., 10 (4): 465 (1964).

    Google Scholar 

  50. F. E. Borgnis, On the forces due to acoustic waves in the measurement of acoustic intensity, J. Acoust. Soc. Am., 25 (3): 546 (1953).

    Article  Google Scholar 

  51. W. G. Cady and C. E. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25(5):892 (1953).

    Google Scholar 

  52. I. P. Golyamina, Magnetostrictive ferrites as a material for electroacoustic transducers, Akust. Zh., 6 (3): 311 (1960).

    Google Scholar 

  53. L. D. Rozenberg and M. G. Sirotyuk, Radiation of sound into a liquid in the presence of cavitation, Akust. Zh., 6 (4): 478 (1960).

    Google Scholar 

  54. M. S. Plesset and S. A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys., 25 (4): 493 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  55. L. I. Ganeva and I. G. Golyamina, Properties of magnetostrictive ferrites at high temperatures, Akust. Zh., 9 (4): 413 (1963).

    Google Scholar 

  56. Winkler, Chemischtechnische Untersuchungsmethoden [Chemical Engineering Research Methods], Vol. 1, Lunge, Berlin (1921), 5, p. 558.

    Google Scholar 

  57. A. S. Bebchuk, On the cavitation destruction of solids, Akust. Zh., 3 (1): 90 (1957).

    Google Scholar 

  58. A. S. Bebchuk, Investigation of the Cavitation Damage of Solids and Surface Films in a Sound Field, Candidate’s Dissertation, Akust. Inst. AN SSSR, Moscow (1960).

    Google Scholar 

  59. M. G. Sirotyuk, Effect of the temperature and gas content of the liquid on cavitation processes, Akust. Zh., 12 (1): 87 (1966).

    Google Scholar 

  60. M. G. Sirotyuk, Ultrasonic cavitation processes at elevated hydrostatic pressures, Akust. Zh., 12(2):231 (1966).

    Google Scholar 

  61. M. G. Sirotyuk, An ultrasonic focusing concentrator of solid material, Akust.’ Zh., 7 (4): 499 (1961).

    Google Scholar 

  62. B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodskii, Cavitation damage of metals and alloys in an ultrasonic field, Application of Ultrasonics in Machinery Construction, Minsk (1964).

    Google Scholar 

  63. B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodskii, Technique for increasing the efficiency of ultrasonic effects on processes in liquids, Ul’trazvuk. Tekh., 3:28 (1964)

    Google Scholar 

  64. N. A. Roi, Onset and development of ultrasonic cavitation (review), Akust. Zh., 3 (1): 3 (1957).

    Google Scholar 

  65. V.A. Akulichev and L. D. Rozenberg, Certain relations in a cavitation region, Akust. Zh., 11 (3): 287 (1965).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sirotyuk, M.G. (1971). Experimental Investigations of Ultrasonic Cavitation. In: Rozenberg, L.D. (eds) High-Intensity Ultrasonic Fields. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5408-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5408-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5410-0

  • Online ISBN: 978-1-4757-5408-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics