Skip to main content

Two-Photon Molecular Excitation in Laser-Scanning Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Molecular excitation by two-photon absorption holds great promise for vital imaging of biological systems using laser-scanning microscopy. Fluorescence microscopy, which can provide submi-cron spatial resolution of chemical dynamics within living cells, is frequently limited in its sensitivity and spatial resolution by background due to out-of-focus fluorescence. Two-photon excitation avoids this background in laser-scanning microscopy by virtue of its nonlinear optical absorption character, which almost completely limits the excitation to the high-intensity region at the focal point of the strongly focused excitation laser. Since excitation of background fluorescence is avoided, no confocal spatial filter is required, and we obtain all of the advantages of a linear (one-photon) confocal microscope plus the absence of out-of-focus photobleach-ing and photodamage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence Microscopy in Three Dimensions, Academic Press, New York.

    Google Scholar 

  • Ashkin, A., and Dziedzic, J.M., 1987, Optical trapping and manipulation of viruses and bacteria, Science235:1517.

    Article  PubMed  CAS  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., and Yamane, T., 1987, Optical trapping and manipulation of single cells using infrared laser beams, Nature330:769.

    Article  PubMed  CAS  Google Scholar 

  • Birge, R.R., 1979, A theoretical analysis of the two-photon properties of linear polyenes and the visual chromophores, J. Chem. Phys.70(1):165.

    Article  CAS  Google Scholar 

  • Birge, R.R., 1986, Two-photon spectroscopy of protein-bound chromophores, Acc. Chem. Res.19:138.

    Article  CAS  Google Scholar 

  • Birge, R.R., and Zhang, C.-F., 1990, Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1A* g +-like and 1B* u +-like π, π* states, J. Chem. Phys.92(12):7178.

    Article  CAS  Google Scholar 

  • Cheung, E.C., and Liu, J.M., 1991, Efficient generation of ultrashort, wavelength-tunable infrared pulses, J. Opt. Soc. Am. B8(7): 1491.

    Article  CAS  Google Scholar 

  • Corrie, J.E.T., and Trentham, D.R., 1993, Caged Nucleotides and Neurotransmitters, Wiley, New York.

    Google Scholar 

  • Corrie, J.E.T., Katayama, Y., Reid, G.P., and Anson, M., 1992, The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules, Philos. Trans. R. Soc. London A Sen340:233.

    Article  CAS  Google Scholar 

  • Curley, P.F., Ferguson, A.I., White, J.G., and Amos, W.B., 1992, Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy, Opt. Quant. Electr.24:851.

    Article  Google Scholar 

  • Denk, W., 1993, Two-photon laser scanning photochemical microscopy used to map the distribution of ligand gated ion channels, Soc. Neurosci.19(1):91.

    Google Scholar 

  • Denk, W., 1994, Two-photon scanning photochemical microscopy: Mapping ligand-gated ion channel distributions, Proc. Nat. Acad. Sci. USA91:6629–6633.

    Article  PubMed  CAS  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science248:73.

    Article  PubMed  CAS  Google Scholar 

  • Eng, J., Lynch, R.M., and Balaban, R.S., 1989, Nicotinamide adenine dinu-cleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes, Biophys. J.55:621.

    Article  PubMed  CAS  Google Scholar 

  • Fork, R.L., Martinez, O.E., and Gordon, J.P., 1984, Negative dispersion using pairs of prisms, Opt. Lett.9(5): 150.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R.G., Gilliland, D.L., and Lytle, F.E., 1990, Second harmonic detection of sinusoidally modulated two-photon excited fluorescence, Anal. Chem.62:2216–2219.

    Article  CAS  Google Scholar 

  • Friedrich, D.M., 1982, Two-photon molecular spectroscopy, J. Chem. Educ.59(6):472.

    Article  CAS  Google Scholar 

  • Friedrich, D.M., and McClain, W.M., 1980, Two-photon molecular spectroscopy, Annu. Rev. Phys. Chem.31:559.

    Article  CAS  Google Scholar 

  • Fu, Q., Mak, G., and van Driel, H.M., 1992, High-power, 62fs infrared optical papametric oscillator synchronously pumped by a 76-MHz Ti:sapphire laser, Opt. Lett.17(14): 1006.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S.R., Hubin, T., and Smith, T.G., 1992, An improved no moving parts video rate confocal microscope, Micron and Micoscopica Acta23(4):437.

    Article  Google Scholar 

  • Göppert-Mayer, M., 1931, Ueber Elementarakte mit zwei Quantenspruengen, Ann. Phys.9:273.

    Article  Google Scholar 

  • Gurney, A.M., and Lester, H.A., 1987, Light-flash physiology with synthetic photosensitive compounds, Physiol. Rev.67:583–617.

    PubMed  CAS  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., and Sakmann, N., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391:85.

    Article  PubMed  CAS  Google Scholar 

  • Hassinger, M. J., 1983, Two-photon excitation spectroscopy, Ph.D. thesis, Purdue University.

    Google Scholar 

  • Hell, S., and Stelzer, E.H.K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun.93:277.

    Article  Google Scholar 

  • Hell, S., Lindek, S., and Stelzer, E.H.K., 1993a, 4Pi-confocal microscopy. In: 1993 International Conference on Confocal Microscopy and 3-D Image Processing, Sydney, Australia.

    Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993b, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc.169(3):391.

    Article  Google Scholar 

  • Hellwarth, R., and Christiansen, P., 1974, Nonlinear optical microscopy examination of structure in polycrystalline ZnSe, Opt. Commun.12(3):318.

    Article  CAS  Google Scholar 

  • Kaiser, W., 1993, Ultrashort Laser Pulses, Springer, Berlin.

    Google Scholar 

  • Kao, J.P.K., and Adams, S.R., 1993, Optical Microscopy, Emerging Methods and Applications, Academic Press, New York, p. 27.

    Google Scholar 

  • Kennedy, S.M., and Lytle, F.E., 1986, p-Bis(i-methylstyryl)benzene as a power-squared sensor for two-photon absorption measurements between 537 and 694 nm, Anal. Chem.58:2643.

    Article  CAS  Google Scholar 

  • Kirby, M.S., Valdivia, H.H., Sagara, Y., and Piston, D.W., 1993, How calcium in the sarcoplasmic reticulum affects excitation-contraction coupling in rat heart. In: XXXII Congress of the International Union of Physiological Sciences, Glasgow, UK.

    Google Scholar 

  • Kliger, D.S., 1983, Ultrasensitive Laser Spectroscopy, Academic Press, New York.

    Google Scholar 

  • Loudon, R., 1983, The Quantum Theory of Light, Oxford University Press, London.

    Google Scholar 

  • McClain (1971). Excited state symmetry assignment through polarized two-photon absorption studies of fluids, J. Chem. Phys.55(6):2789.

    Article  Google Scholar 

  • Milburn, T., Matsubara, N., Billington, A.P., and Udgaonkar, J.B., 1989, Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand, Biochemistry28:49.

    Article  PubMed  CAS  Google Scholar 

  • Mortensen, O.S., and Svendsen, E.N., 1981, Initial and final molecular states as “virtual” states in two-photon processes, J. Chem. Phys74(4):3185.

    Article  CAS  Google Scholar 

  • Nakamura, K., 1993, Three-dimensional imaging characteristics of laser scan fluorescence microscopy: Two-photon excitation vs. single-photon excitation, Optik93(1):39.

    Google Scholar 

  • Niggli, E., Piston, D.W., Kirby, M.S., and Cheng, H., 1994, A confocal laser scanning microscope designed for indicators with ultraviolet excitation wavelengths, Am. J. Physiol, in press.

    Google Scholar 

  • Piston, D.W., and Webb, W.W., 1991, Three dimensional imaging of intracellular calcium activity using two-photon excitation of the fluorescent indicator dye Indo-1, Biophys J59:156.

    Google Scholar 

  • Piston, D.W., Sandison, D.R., and Webb, W.W., 1992, Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser scanning microscopy, Proc. SPIE.1640:379.

    Article  CAS  Google Scholar 

  • Piston, D.W., Summers, R.G., and Webb, W.W., 1993, Observation of nuclear division in living sea urchin embryos by two-photon fluorescence microscopy, Biophys. J. 63:Al 10.

    Google Scholar 

  • Piston, D.W., Kirby, M.S., Cheng, H., Lederer, W.J., 1994, Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity, Appl. Optics33:662.

    Article  CAS  Google Scholar 

  • Piston, D.W., Masters, B.R., and Webb, W. W., 1995, Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy, J. Microsc, in press.

    Google Scholar 

  • Powers, P.E., Ellingson, R.J., and Pelouch, W.S., 1993, Recent advances of the Ti:sapphire high-repetition rate femtosecond optical parametric oscillator, J. Opt. Soc. Am. B10(11):2162.

    Article  CAS  Google Scholar 

  • Rehms, A.A., and Callis, P.R., 1993, Two-photon fluorescence excitation spectra of aromatic amino acids, Chem. Phys. Lett.208(3, 4):276.

    Article  CAS  Google Scholar 

  • Ridsdale, J.A., and Webb, W.W., 1993, The viability of cultured cells under two-photon laser scanning microscopy, Biophys. J.63: A109.

    Google Scholar 

  • Sandison, D.R., and Webb, W.W., 1994, Background rejection and signal-to-noise optimization in the confocal and alternative fluorescence microscopes, Appl. Optics33:603.

    Article  CAS  Google Scholar 

  • Scharf, B.E., and Band, Y.B., 1988, Enhanced two-photon transitions in molecules with permanent diplole moments, Chem. Phys. Lett.144(2): 165.

    Article  CAS  Google Scholar 

  • Sheppard, C. J.R., and Cogswell, C.J., 1991, Effects of aberrating layers and tube length on confocal imaging properties, Optik87(1):34.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1990, Image formation in two-photon fluorescence microscopy, Optik86(3): 104.

    CAS  Google Scholar 

  • Sheppard, C.J.R., and Kompfner, R., 1978, Resonant scanning optical microscope, Appl. Optics17(18):2879.

    Article  CAS  Google Scholar 

  • Silberzan, I., Williams, R.M., and Webb, W.W., 1993, Fluorescence photoacti-vation by two-photon excitation: Kinetics of uncaging and three-dimensional point diffusion measurements, Biophys. J.63.A109.

    Google Scholar 

  • Spence, D.E., Kean, P.N., and Sibbett, W., 1991, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett16(1):42.

    Article  PubMed  CAS  Google Scholar 

  • Stelzer, E.H.K., Hell, S., and Lindek, S., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun.104(4–6):223.

    Article  CAS  Google Scholar 

  • Svoboda, K., and Block, S.M., 1994, Biological applications of optical forces, Annu. Rev. Biophys. Biomol Struct.23:247–285.

    Article  PubMed  CAS  Google Scholar 

  • Valdemanis, J.A., and Fork, R.L., 1986, IEEE. J. Quantum ElectronQE-22:112.

    Article  Google Scholar 

  • Visser, T.D., Brakenhoff, G.J., and Groen, F.C.A., 1991, The one-point fluorescence response in confocal microscopy, Optik87(1):39.

    CAS  Google Scholar 

  • Vorobjev, I.A., Hong, L., and Wright, W.H., 1993, Optical trapping for chromosome manipulation: A wavelength dependence of induced chromosome bridges, Biophys. J.64:533.

    Article  PubMed  CAS  Google Scholar 

  • Whinnery, J.R., 1974, Laser measurement of optical absorption in liquids, Ace. Chem. Res.7:225.

    Article  CAS  Google Scholar 

  • Williams, R.M., Brust-Macher, I., Piston, D.W., and Webb, W.W., 1993, Biophys. J.63:A367.

    Google Scholar 

  • Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.

    Google Scholar 

  • Yariv, A., 1989, Quantum Electronics, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Denk, W., Piston, D.W., Webb, W.W. (1995). Two-Photon Molecular Excitation in Laser-Scanning Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics