Skip to main content

Lens Aberrations in Confocal Fluorescence Microscopy

  • Chapter

Abstract

Modern optical microscopes are so good that many scientists forget that these instruments only provide their optimal performance if they are used under certain operating conditions. Typical users may be unaware of the very existence of such limitations because they may unwittingly work within the limits or fail to recognize their effects. It is probably also correct to assume that the engineers who designed the instrument did not expect the scientist to use it with devices that exceed the sensitivity and intra-scene dynamic range of the human eye or photographic film. Last but not least, the manufacturer does not intend to discourage purchase by emphasizing the limits imposed by the specifications of the instrument.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Born, M., and Wolf, E., 1980, Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  • Carlsson, K., 1991, The influence of specimen refractive index, detector signal integration, and non-uniform scan speed on the imaging properties in confocal microscopy, J. Microsc. 163:167–178.

    Article  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Article  Google Scholar 

  • Hell, S., and Stelzer, E.H.K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Optic Commun. 93:277–282.

    Article  Google Scholar 

  • Hell, S., Lehtonen, E., and Stelzer, E.H.K., 1992, Confocal fluorescence microscopy: Wave optics considerations and applications to cell biology. In: Visualization in Biomedical Microscopies (A. Kriete, ed.), Verlag Chemie, Weinheim, pp. 145–161.

    Google Scholar 

  • Hopkins, H.H. 1943, The airydisc formula for systems of high relative aperture, Proc. Phys. Soc. 55:116.

    Article  Google Scholar 

  • Kaiser, W., and Garrett, C.G.B., 1961, Phys. Rev. Lett. 7:229.

    Article  CAS  Google Scholar 

  • Li, Y., and Wolf, E., 1981, Focal shifts in diffracted converging spherical waves, Optic Commun. 39:211–215.

    Article  Google Scholar 

  • Ling, H., and Lee, S.W., 1984, Focusing of electromagnetic waves through a dielectric interface, J. Opt. Soc. Am. A1:965–973.

    Article  Google Scholar 

  • Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems. II, Proc. R. Soc. Lond. Ser. A 253:349–357.

    Article  Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991, The point-spread function of a confocal microscope: Its measurement and use in deconvolution of 3-D data, J. Microsc. 163:151–166.

    Article  Google Scholar 

  • Sheppard, C.J.R., 1988, Aberrations in high aperture conventional and confocal imaging systems, Appl. Optics 27:4782–4786.

    Article  CAS  Google Scholar 

  • Sheppard, C.J.R., and Cogswell, C.J., 1991, Effects of aberrating layers and tube length on confocal imaging properties, Optik 87:34–38.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992, Image formation in two-photon fluorescence microscopy, Optik 86:104–106 [changed in an Erratum, Optik 92:102:1992].

    Google Scholar 

  • Stelzer, E.H.K., Hell, S., Lindek, S., Stricker, R., Pick, R., Storz, C., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Optic Commun. 104:223–228.

    Article  CAS  Google Scholar 

  • Stelzer, E.H.K., Wacker, I., and De Mey, J.R., 1991, Confocal fluorescence miocroscopy in modern cell biology, Semin. Cell Biol. 2:145–152.

    PubMed  CAS  Google Scholar 

  • Van-der-Voort, H.T.M., and Brakenhoff, G.J., 1990, 3-D image formation in high-aperture fluorescence confocal microscopy: A numerical analysis, J.Microsc. 158:43–54.

    Article  Google Scholar 

  • Visser, T.D., Oud, J.L., and Brakenhoff, G.J., 1992, Refractive index and axial distance measurements in 3-D microscopy, Optik 90:17–19.

    Google Scholar 

  • Visser, T.D., Brakenhoff, G.J., and Groen, F.C.A., 1991, The one-point fluorescence response in confocal microscopy, Optik 87:39–40.

    CAS  Google Scholar 

  • Wilson, T., and Carlini, A.R., 1989, The effect of aberrations on the axial response of confocal imaging systems, J. Microsc. 154:243–256.

    Article  Google Scholar 

  • Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hell, S.W., Stelzer, E.H.K. (1995). Lens Aberrations in Confocal Fluorescence Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics