Skip to main content

A Two-Station Multiclass Network

  • Chapter
Fundamentals of Queueing Networks

Part of the book series: Stochastic Modelling and Applied Probability ((SMAP,volume 46))

  • 1766 Accesses

Abstract

Most of this chapter focuses on a two-station queueing network. We spell out details of the model in the next section, followed by Section 8.2-Section 8.5, where we study, respectively, a corresponding fluid network, the stability of the queueing network via the fluid network, the fluid limit, and the diffusion limit. Finally, in Section 8.6 we present additional network examples that appear to be counterintuitive to what we know from single-class networks. This last section is technically independent of the earlier sections; however, it provides further motivation as to why stability is an important and interesting issue in multiclass networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, J. and J.G. Dai. (1996). Simulation studies of multiclass queueing networks. IIE Transactions, 29, 213–219.

    Google Scholar 

  2. Bertsimas, D., D. Gamarnik, and J. Tsitsiklis. (1996). Stability conditions for multiclass fluid queueing networks. IEEE Transactions on Automatic Control, 41, 1618–1631.

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

    MATH  Google Scholar 

  4. Botvich, D.D. and A.A. Zamyatin. Ergodicity of conservative communication networks. Rapport de recherche 1772, INRIA, October, 1992.

    Google Scholar 

  5. Bramson, M. (1994a). Instability of FIFO queueing networks. Annals of Applied Probability, 4, 414–431.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramson, M. (1994b). Instability of FIFO queueing networks with quick service times. Annals of Applied Probability, 4, 693–718.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramson, M. (1996). Convergence to equilibria for fluid models of FIFO queueing networks. Queueing Systems, Theory and Applications, 22, 5–45.

    MathSciNet  MATH  Google Scholar 

  8. Bramson, M. (1999). A stable queueing network with unstable fluid model. Annals of Applied Probability, 9, 818–853.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H. (1988). A heterogeneous fluid model and its applications in multiclass queueing networks. Submitted to George Nicholson Student Paper Competition, Operations Research Society of America (Honorable Mention).

    Google Scholar 

  10. Chen, H. (1995). Fluid approximations and stability of multiclass queueing networks: Work-conserving discipline. Annals of Applied Probability, 5, 637–655.

    Google Scholar 

  11. Chen, H. and A. Mandelbaum. (1991). Open heterogeneous fluid networks, with applications to multiclass queues. Preprint.

    Google Scholar 

  12. Chen, H. and H. Ye. (1999). Piecewise linear Lyapunov function for the stability of priority multiclass queueing networks. Proceedings of the 28th IEEE Conference on Decision and Control, 931–936.

    Google Scholar 

  13. Chen, H. and H. Zhang. (1997). Stability of multiclass queueing networks under FIFO service discipline. Mathematics of Operations Research. 22, 691–725.

    Google Scholar 

  14. Chen, H. and H. Zhang. (1998). Diffusion approximations for Kumar—Seidman network under a priority service discipline. Operations Research Letters, 23, 171–181.

    Google Scholar 

  15. Chen, H. and H. Zhang. (2000). Stability of multiclass queueing networks under priority service disciplines. Operations Research, 48, 2637.

    Google Scholar 

  16. Dai, J.G. (1995). On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Annals of Applied Probability, 5, 49–77.

    Google Scholar 

  17. Dai, J.G. (1996). A fluid-limit model criterion for instability of multi-class queueing networks. Annals of Applied Probability. 6, 751–757.

    Article  MATH  Google Scholar 

  18. Dai, J.G., J.J. Hasenbein, and J.H. Vande Vate. (1999) Stability of a three-station fluid network, Queueing Systems, Theory and Applications, 33, 293–325.

    Google Scholar 

  19. Dai, J.G. and J.H. Vande Vate. (1996). Virtual stations and the capacity of two-station queueing networks (preprint).

    Google Scholar 

  20. Dai, J.G. and J.H. Vande Vate. (2000). The stability of two-station multi-type fluid networks. Operations Research (to appear).

    Google Scholar 

  21. Dai, J.G. and G. Weiss. (1996). Stability and instability of fluid models for certain reentrant lines. Mathematics of Operations Research, 21, 115–134.

    Article  MathSciNet  MATH  Google Scholar 

  22. Down, D. and S. Meyn. (1994). Piecewise linear test functions for stability of queueing networks. Proceeding of the 33rd Conference on Decision and Control, 2069–2074.

    Google Scholar 

  23. Dumas,V. (1997). A multiclass network with nonlinear, nonconvex, nonmonotonic stability conditions. Queueing Systems, Theory and Applications, 25, 610–623.

    Google Scholar 

  24. Ethier, S.N. and T.G. Kurtz. (1986). Markov Processes, Wiley, New York.

    Book  MATH  Google Scholar 

  25. Harrison, J.M. and R.J. Williams. (1996). A multiclass closed network with unconventional heavy traffic behavior. Annals of Applied Probability. 6, 1–47.

    Google Scholar 

  26. Kumar, P.R. and S. Meyn. (1995). Stability of queueing networks and scheduling polities. IEEE Transactions on Automatic Control, 40, 251–260.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumar, P.R. and T.I. Seidman. (1990). Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic Control, 35, 289–298.

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyn, S.P. (1995). Transience of multiclass queueing networks via fluid limit models. Annals of Applied Probability, 5, 946–957.

    Article  MathSciNet  MATH  Google Scholar 

  29. Meyn, S. and R.L. Tweedie. (1993). Markov Chains and Stochastic Stability. Springer-Verlag, London.

    Book  MATH  Google Scholar 

  30. Pollard, D. (1984). Convergence of Stochastic Processes,Springer-Verlag.

    Google Scholar 

  31. Rybko, A.N. and A.L. Stolyar. (1992). Ergodicity of stochastic processes describing the operations of open queueing networks. Problemy Peredachi Informatsii, 28, 2–26.

    Google Scholar 

  32. Seidman, T.I. (1993). First come first served can be unstable. IEEE Transactions on Automatic Control, 39, 2166–2171.

    Article  MathSciNet  Google Scholar 

  33. Whitt, W. (1993). Large fluctuations in a deterministic multiclass network of queues, Management Science, 39, 1020–1028.

    Article  MATH  Google Scholar 

  34. Ye, H. and H. Chen. (2000). Lyapunov method for the stability of fluid networks. Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, H., Yao, D.D. (2001). A Two-Station Multiclass Network. In: Fundamentals of Queueing Networks. Stochastic Modelling and Applied Probability, vol 46. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5301-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5301-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2896-2

  • Online ISBN: 978-1-4757-5301-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics