Skip to main content

Body Size, Brain Size and Feeding Strategies

  • Chapter
Food Acquisition and Processing in Primates

Abstract

The concept of allometry (non-linear scaling of individual biological parameters to body size) has been applied repeatedly, if somewhat intermittently, to morphological characteristics for almost a century. Particular interest has focused on brain size, beginning with the studies of Snell (1892) and Dubois (1897) and culminating in Jerison’s landmark treatise (1973), in which allometric analysis provided the foundation for consideration of the evolution of the brain throughout the vertebrates. Only relatively recently, however, has body size been taken into account explicitly as a factor involved in the behavioural/ecological relationships of vertebrates. For mammals, McNab (1963) was the first to examine home range size in relation to body size according to well-defined allometric principles. Subsequently, this and other aspects of ranging behaviour have been subjected to detailed allometric analysis by several authors, notably with respect to the primates (e.g. Milton and May, 1976; Clutton-Brock and Harvey, 1977a, 1977b; Martin, 1981a; Harvey and Clutton-Brock, 1981; Gittleman and Harvey, 1982; Mace and Harvey, 1982). Further, there have been a number of recent studies suggesting a link between brain size (relative to body size) and specific aspects of behavioural ecology in primates and other mammals, particularly with respect to feeding behaviour (e.g. Pirlot and Stephan, 1970; Eisenberg and Wilson, 1978, 1981; Clutton-Brock and Harvey, 1980; Harvey et al., 1980; Mace et al., 1981; Mace and Eisenberg, 1982). All of these studies together have helped to place comparative studies of primate behavioural ecology on a more secure footing; but there are a number of inherent problems involved in the interpretation of the results of such allometric analyses. One of the main aims of this paper is to outline those problems and to discuss some of their implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E.F. (1949) Quantitative relations in the physiological constitutions of mammals. Science 109: 579–585.

    Article  CAS  Google Scholar 

  • Brody, S. (1945) “Bioenergetics and Growth”. Rheinhold, New York.

    Google Scholar 

  • Chivers, D.J. and Hladik, C.M. (1980) Morphology of the gastrointestinal tract in primates: comparison with other mammals in relation to diet. J. Morph. 166: 337–386.

    Article  CAS  Google Scholar 

  • Clutton-Brock, T.H. and Harvey, P.H. (1977a) Species differences in feeding and ranging behaviour in primates. In “Primate Ecology: Studies of Feeding and Ranging Behaviour in Lemurs, Monkeys and Apes” ( T.H. Clutton-Brock, ed.), pp. 557–584. Academic, London.

    Google Scholar 

  • Clutton-Brock, T.H. and Harvey, P.H. (1977b) Primate ecology and social organization. J. Zool. (Lond.) 183: 1–39.

    Article  Google Scholar 

  • Clutton-Brock, T.H. and Harvey, P.H. (1980) Primates, brains and ecology. J. Zool. (Lond.) 190: 309–323.

    Article  Google Scholar 

  • Damuth, J. (1981a) Population density and body size in mammals. Nature, Lond. 290: 699–700.

    Article  Google Scholar 

  • Damuth, J. (1981b) Home range, home range overlap and species energy use among herbivorous animals. Biot. J. Linn. Soc. 15: 185–193.

    Article  Google Scholar 

  • Dawson, T.J. and Hulbert, A.J. (1970) Standard metabolism, body temperature, and surface areas of Australian marsupials. Am. J. Physiol. 218: 1233–1238.

    CAS  Google Scholar 

  • Dubois, E. (1897) Sur le rapport de l’encĂ©phale avec la grandeur du corps chez les mammifères. Bull. MĂ©m. Soc. Anthrop. Paris 8: 337–376.

    Article  Google Scholar 

  • Eisenberg, J.F. and Wilson, D.E. (1978) Relative brain size and feeding strategies in the Chiroptera. Evolution 32: 740–751.

    Article  Google Scholar 

  • Eisenberg, J.F. and Wilson, D.E. (1981) Relative brain size and demographic strategies in didelphid marsupials. Amer. Nat. 118: 1–15.

    Article  Google Scholar 

  • Gittleman, J.L. and Harvey, P.H. (1982) Carnivore home-range size, metabolic needs and ecology. Behay. Ecol. Sociobiol. 10: 57–63.

    Article  Google Scholar 

  • Harestad, A.S. and Bunnell, F.L. (1979) Home range and body weight–a reevaluation. Ecology 60: 389–402.

    Article  Google Scholar 

  • Harvey, P.H. and Clutton-Brock, T.H. (1981) Primate home-range size and metabolic needs. Behay. Ecol. Sociobiol. 8: 151–155.

    Article  Google Scholar 

  • Harvey, P.H., Clutton-Brock, T.H. and Mace, G.M. (1980) Brain size and ecology in small mammals and primates. Proc. Nat. Acad. Sci., Wash. 77: 4387–4389.

    CAS  Google Scholar 

  • Harvey, P.H. and Mace, G.M. (1982) Comparisons between taxa and adaptive trends: problems of methodology. In “Current Problems in Sociobiology” ( King’s College Sociobiology Group, eds.), pp. 343–361. University Press, Cambridge.

    Google Scholar 

  • Hemmingsen, A.M. (1950) The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep. Steno Mem. Hosp. 4: 7–58.

    Google Scholar 

  • Hemmingsen, A.M. (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno Mem. Hosp. 9: 1–1–10.

    Google Scholar 

  • Hunter, J., Martin, R.D., Dixson, A.F. and Rudder, B.C. (1979) Gestation and inter-birth intervals in the owl monkey (Aotus trivirgatus griseimembra). Folic primatol. 31: 165–175.

    Article  CAS  Google Scholar 

  • Jenkins, S.H. (1981) Common patterns in home range–body size. relationships of birds and mammals. Am. Nat. 118: 126–128.

    Article  Google Scholar 

  • Jerison, H.J. (1973) “Evolution of the Brain and Intelligence”. Academic, New York.

    Google Scholar 

  • Kermack, K.A. and Haldane, J.B.S. (1950) Organic correlation and allometry. Biometrika 37: 30–41.

    CAS  Google Scholar 

  • Kleiber, M. (1932) Body size and metabolism. Hilgardia 6: 315–353.

    CAS  Google Scholar 

  • Kleiber, M. (1961) “The Fire of Life: An Introduction to Animal Energetics”. John Wiley, New York.

    Google Scholar 

  • Lande, R. (1979) A quantitative genetic analysis of multivariate evolution applied to brain:body size allometry. Evolution 33: 402–416.

    Article  Google Scholar 

  • Lasiewski, R.C. and Dawson, W.R. (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13–23.

    Article  Google Scholar 

  • Leutenegger, W. (1973) Maternal-fetal weight relationships in Primates. Folia primatoZ. 20: 280–293.

    Article  CAS  Google Scholar 

  • Mace, G.M. and Eisenberg, J.F. (1982) Competition, niche specialization and evolution of brain size in the genus Peromyscus. Biol. J. Linn. Soc. 17: 243 - -257.

    Article  Google Scholar 

  • Mace, G.M. and Harvey, P.H. (1982) Energetic constraints on home range size. Am. Nat. 121: 120–132.

    Article  Google Scholar 

  • Mace, G.M., Harvey, P.H. and Clutton-Brock, T.H. (1980) Is brain size an ecological variable? Trends Neurosci. 1980: 193–196.

    Article  Google Scholar 

  • Mace, G.M., Harvey, P.H. and Clutton-Brock, T.H. (1981) Brain size and ecology in small mammals. J. Zool. (Lond.) 193: 333–354.

    Article  Google Scholar 

  • Mace, G.M., Harvey, P.H. and Clutton-Brock, T.H. (1982) Vertebrate home range size and metabolic requirements. In “The Ecology of Animal Movement” ( I. Swingland and P.J. Greenwood, eds.), University Press, Oxford.

    Google Scholar 

  • Martin, R.D. (1975) The bearing of reproductive behaviour on strepsirhine phylogeny. In “Phylogeny of Primates: A Multidisciplinary Approach” ( W.P. Luckett and F.S. Szalay, eds.), pp. 265–297. Plenum, New York.

    Chapter  Google Scholar 

  • Martin, R.D. (1980) Adaptation and body size in primates. Z. Morph. Anthrop. 71: 115–124.

    CAS  Google Scholar 

  • Martin, R.D. (1981a) Field studies of primate behaviour. Symp. Zool. Soc. Lond. 46: 287–336.

    Google Scholar 

  • Martin, R.D. (1981b) Relative brain size and metabolic rate in terrestrial vertebrates. Nature 293: 57–60.

    Article  CAS  Google Scholar 

  • Martin, R.D. (in press) “Human Brain Evolution in an Ecological Context” (52nd James Arthur Lecture on the Evolution of the Human Brain). American Museum of Natural History, New York.

    Google Scholar 

  • Martin, R.D., Chivers, D.J., MacLarnon, A.M. and Hladik, C.M. (in press) Gastrointestinal allometry in primates and other mammals. In “Size and Scaling in Primate Biology” (W.L. Jungers, ed.). Plenum, New York.

    Google Scholar 

  • Martin, R.D. and Harvey, P.H. (in press) Brain size allometry: ontogeny and phylogeny. In “Size and Scaling in Primate Biology” (W.L. Jungers, ed.). Plenum, New York.

    Google Scholar 

  • McNab, B.K. (1963) Bioenergetics and the determination of home range size. Am. Nat. 97: 133–140.

    Article  Google Scholar 

  • McNab, B.K. (1978) Energetics of arboreal folivores: physiological problems and ecological consequences of feeding on an ubiquitous food supply. In “The Ecology of Arboreal Folivores” ( G.G. Montgomery, ed.), pp. 153–162. Smithsonian Institution, Washington.

    Google Scholar 

  • McNab, B.K. (1980) Food habits, energetics, and the population biology of mammals. Am. Nat. 116: 106–124.

    Article  Google Scholar 

  • McNab, B.K. (1982) Evolutionary alternatives in the physiological ecology of bats. In “Ecology of Bats” ( T.H. Kunz, ed.), pp. 151–200. Plenum, New York.

    Chapter  Google Scholar 

  • Milton, K. and May, M.L. (1976) Body weight, diet and home range area in primates. Nature 259: 459–462.

    Article  CAS  Google Scholar 

  • Nice, M.M. (1938) The biological significance of bird weights. Bird-Banding 9: 1–11.

    Article  Google Scholar 

  • Peters, R.H. (1976) Tautology in evolution and ecology. Am. Nat. 110: 1–12.

    Article  Google Scholar 

  • Pirlot, P. and Stephan, H. (1970) Encephalization in Chiroptera. Can. J. Zoo Z. 48: 433–444.

    Article  Google Scholar 

  • Schoener, T.W. (1968) Sizes of feeding territories among birds. Ecology 49: 123–141.

    Article  Google Scholar 

  • Snell, 0. (1892) Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiatr. 23: 436–446.

    Article  Google Scholar 

  • Stahl, W. (1967) Scaling of respiratory variables in mammals. J. appl. Physiol. 22: 453–460.

    CAS  Google Scholar 

  • Stephan, H., Nelson, J.E. and Frahm, H.D. (1981) Brain size comparison in Chiroptera. Z. zool. Syst. Evolutionsforsch. 19: 195–222.

    Article  Google Scholar 

  • Stephan, H. and Pirlot, P. (1970) Volumetric comparisons of brain structures in bats. Z. zool. Syst. Evolutionsforsch. 8: 200–236.

    Article  Google Scholar 

  • Tenney, S. and Remmers, J. (1963) Comparative morphology of the mammalian lung: diffusion area. Nature, Lond. 197: 54–56.

    Article  CAS  Google Scholar 

  • Van Valen, L. (1974) Brain size and intelligence in man. Am. J. phys. Anthrop. 40: 417–424.

    Article  Google Scholar 

  • Weibel, E. (1972) Morphometric estimation of pulmonary diffusion capacity. Resp. Physiol. 14: 26–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.D. (1984). Body Size, Brain Size and Feeding Strategies. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (eds) Food Acquisition and Processing in Primates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5244-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5244-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5246-5

  • Online ISBN: 978-1-4757-5244-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics