Skip to main content

Studies on Identifying the Binding Sites of Folate and its Derivatives in Lactobacillus Casei Thymidylate Synthase

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

  • 37 Accesses

Summary

It was shown that folate and its derivatives have a profound effect on stabilizing thymidylate synthase in vitro and in vivo, as a consequence of ternary formation between the folate, dUMP, or FdUMP, and the synthase. The degree to which complex formation is affected can be revealed qualitatively by circular dichroism and quantitatively by equilibrium dialysis using the Lactobacillus casei synthase. In contrast to the pteroylmonoglutamates, the pteroylpolyglutamates bind to thymidylate synthase in the absence of dUMP, but even their binding affinity is increased greatly by this nucleotide or its analogues. Similarly, treatment of the synthase with carboxypeptidase A prevents the binding of the pteroylmonoglutamates and reduces the binding of the polyglutamates without affecting dUMP binding. The latter does not protect against carboxypeptidase inactivation but does potentiate the protective effect of the pteroylpolyglutamates.

To determine the region of the synthase involved in the binding of the glutamate residues, Pte[14C]GluGlu6 was activated by a water soluble carbodiimide in the presence and absence of dUMP. This folate derivative behaved as a competitive inhibitor of 5,10-CH2Hi4PteGlu, in contrast to methotrexate which was non-competitive. Separation of the five cyanogen bromide peptides from the L. casei synthase revealed 80% of the radioactivity to be associated with CNBr-2 and about 15% with CNBr-4. Chymotrypsin treatment of CNBr-2 yielded two 14C-labeled peaks on high performance liquid chromatography, with the slower migrating one being separated further into two peaks by Bio-gel P2 chromatography. All three peptides came from the same region of CNBr-2, encompassing residues 47–61 of the enzyme. From these studies it would appear that the residues most probably involved in the fixation of PteGlu7 are lysines 50 and 58. In contrast, methotrexate appeared to bind to another region of CNBr-2.

This investigation was supported in part by Public Health Research Grants GM 26387 and GM 26645 from the National Institute of General Medical Sciences, PHS/DHHS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blakley, R. L., in: The Biochemistry of Folic Acid and Related Pteridines, North-Holland, Amsterdam (1969).

    Google Scholar 

  2. Chemistry and Biology of the Pteridines (R. L. Kisliuk and G. Brown, eds.), Vol, 4 in Developments in Biochemistry, Elsevier, Amsterdam (1979).

    Google Scholar 

  3. Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., Jr., and Wolfe, J. A., New Eng. J. Med., 238, 787–793 (1948).

    Article  PubMed  CAS  Google Scholar 

  4. Burchenal, J. H., Johnston, S. F., Burchenal, J. R., Kushida, M. N., Robinson, E., and Stock, C. C., Proc. Exp. Biol, and Med., 71, 381–387 (1949).

    Article  CAS  Google Scholar 

  5. Osborne, M. J., Freeman, M., and Huennekens, F. M., Proc. Exp. Biol. Med., 97, 429–43 (1958).

    Article  Google Scholar 

  6. Lorenson, M. Y., Maley, G. F., and Maley, F., J. Biol. Chem., 342, 3333–3344 (1967).

    Google Scholar 

  7. Slavik, K., and Zakrzewski, S. F., Mol. Pharmacol., 3, 370–377 (1967).

    PubMed  CAS  Google Scholar 

  8. Plante, L. T., Crawford, E. J., and Friedkin, M., J. Biol. Chem., 242, 1466–1476 (1967).

    PubMed  CAS  Google Scholar 

  9. Bird, O. D., Vaitkus, J. W., and Clarke, J., Mol. Pharmacol., 6, 573–575 (1970).

    PubMed  CAS  Google Scholar 

  10. Kisliuk, R. L., Gaumont, Y., and Baugh, C. M., J. Biol. Chem., 249, 4100–4103 (1974).

    PubMed  CAS  Google Scholar 

  11. Friedkin, M., Plante, L. T., Crawford, E. J., and Crumm, M., J. Biol. Chem., 250, 5614–5621 (1975).

    PubMed  CAS  Google Scholar 

  12. Jones, T. R., Calvert, A. H., Jackman, A. L., Brown, S. J., Jones, M., and Harrap, K. R., Europ. J. Cancer, 17, 11–19 (1981).

    Article  CAS  Google Scholar 

  13. Galivan, J. H., Maley, G. F., and Maley, F., Biochemistry, 15, 356–362 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. Friedkin, M., and Romberg, A., in: The Chemical Basis of Heredity (W. D. McElroy and B. Glass, eds.), pp. 609–614, Johns Hopkins Press, Baltimore (1957).

    Google Scholar 

  15. Shin, Y. S., Williams, M. A., and Stokstad, E. L. R., Biochem. Biophys. Res. Commun., 47, 35–43 (1972).

    Article  PubMed  CAS  Google Scholar 

  16. Houlihan, C. M., and Scott, J. M., Biochem. Biophys. Res. Commun., 48, 1675–1681 (1972).

    Article  PubMed  CAS  Google Scholar 

  17. Baugh, C. M., Brawerman, E., and Nair, M. G., Biochemistry, 13, 4952–4957 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. Dolnick, B. J., and Cheng, Y. C., J. Biol. Chem., 253, 3563–3567 (1978).

    PubMed  CAS  Google Scholar 

  19. Kisliuk, R. L., Gaumont, Y., Lafer, E., Baugh, C. M., and Montgomery, J. A., Biochemistry, 20, 929–934 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. Dunlap, R. B., Harding, N. G. L., and Huennekens, F. M., Biochemistry, 10, 88–97 (1971).

    Article  PubMed  CAS  Google Scholar 

  21. Leary, R. P., and Kisliuk, R. L., Prep. Biochem., 1, 47–54 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. Maley, G. F., Bellisario, R. L., Guarino, D. U., and Maley, F., J. Biol. Chem., 254, 1301–1304 (1979).

    PubMed  CAS  Google Scholar 

  23. Galivan, J. H., Maley, G. F., and Maley, F., Biochemistry, 14, 3338–3344 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. Santi, D. B., McHenry, C. S., and Somer, H., Biochemistry, 13, 471–481 (1974).

    Article  PubMed  CAS  Google Scholar 

  25. Maley, G. F., Bellisario, R. L., Guarino, D. U., and Maley, F., J. Biol. Chem., 254, 1288–1295 (1979).

    PubMed  CAS  Google Scholar 

  26. Labow, R., Maley, G. F., and Maley, F., Cancer Res., 29, 366–372 (1969).

    PubMed  CAS  Google Scholar 

  27. Maley, F., and Maley, G. F., Ann. N.Y. Acad. Science, 186, 168–171 (1971).

    Article  CAS  Google Scholar 

  28. Roberts, D., and Loehr, E. V., Cancer Res., 31, 1181–1187 (1971).

    PubMed  CAS  Google Scholar 

  29. Conrad, A. H., and Ruddle, F. M., J. Cell Science, 10, 471–486 (1972).

    PubMed  CAS  Google Scholar 

  30. Bonney, R. J., and Maley, F., Cancer Res., 35, 1950–1956 (1975).

    PubMed  CAS  Google Scholar 

  31. Levitzki, A., Stallcup, W. B., and Koshland, D. E., Jr., Biochemistry, 10, 3371–3378 (1971).

    Article  PubMed  CAS  Google Scholar 

  32. Galivan, J. H., Maley, F., and Baugh, C. M., Biochem. Biophys. Res. Commun., 71, 527–534 (1976).

    Article  PubMed  CAS  Google Scholar 

  33. Aull, J. L., Loeble, R. B., and Dunlap, R. B., J. Biol. Chem., 249, 1167–1172 (1974).

    PubMed  CAS  Google Scholar 

  34. Bellisario, R. L., Maley, G. F., Galivan, J. H., and Maley, F., Proc. Natl. Acad. Sci. USA, 73, 1848–1852 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. Kaiman, T. I., Biochemistry, 10, 2567–2573 (1971).

    Article  Google Scholar 

  36. Danenberg, P. V., Langenbach, R. J., and Heidelberger, C., Biochemistry, 13, 926–933 (1974).

    Article  PubMed  CAS  Google Scholar 

  37. Leary, R. P., Beaudette, N., and Kisliuk, R. L., J. Biol. Chem., 250, 4864–4868 (1975).

    PubMed  CAS  Google Scholar 

  38. Galivan, J., Noonan, J., and Maley, F., Arch. Biochem. Biophys., 184, 336–345 (1977).

    Article  PubMed  CAS  Google Scholar 

  39. Plese, P. C., and Dunlap, R. B., J. Biol. Chem., 252, 6139–6144 (1977).

    PubMed  CAS  Google Scholar 

  40. Galivan, J., Maley, F., and Baugh, C. M., Arch. Biochem. Biophys., 184, 346–354 (1978).

    Article  Google Scholar 

  41. Fernandes, D. J., and Bertino, J. R., Proc. Natl. Acad. Sci. USA, 77, 5663–5667 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. Maley, G. F., Maley, F., and Baugh, C. M., J. Biol. Chem., 254, 7485–7487 (1979).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maley, F., Maley, G.F. (1983). Studies on Identifying the Binding Sites of Folate and its Derivatives in Lactobacillus Casei Thymidylate Synthase. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics