Skip to main content

Methotrexate Metabolism by Bone Marrow Cells from Patients with Leukemia

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

Summary

Bone marrow cells from children with leukemia in remission and lymphoblasts and myeloblasts from children with early and late-stage leukemia all accumulated methotrexate during short-term culture and converted it to poly-γ-glutamyl derivatives. This metabolism was time and dose-dependent. Leukemia cells from two patients with chronic myelocytic leukemia also synthesized methotrexate polygluta-mates. Patients varied one from another in the quantity of total non-exchangeable methotrexate and methotrexate polyglutamates present in cells, but highest levels of each of these were seen in late acute lymphoblastic leukemia and in acute myeloblastic leukemia.

Co-incubation of leukemic cells with both methotrexate and a ten-fold excess of folinic acid decreased accumulation and poly-glutamylation of methotrexate to the same extent as chieved by reducing methotrexate concentration ten-fold. Co-incubation with methotrexate and a ten-fold excess of vincristine did not increase total cell methotrexate and methotrexate polyglutamates in leukemic cells in culture. Such an increase had been anticipated from earlier studiese with other cells. Indeed, levels of methotrexate and its derivatives were modestly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McBurney MW and Whitmore GF (1974) Cell 2: 182–188.

    Google Scholar 

  2. Taylor RT and Hanna ML (1977) Arch. Biochem. Biophys. 181:331–344.

    Article  PubMed  CAS  Google Scholar 

  3. Kisliuk RL, Gaumont Y and Baugh CM (1974) J. Biol. Chem. 249:4100–4103.

    PubMed  CAS  Google Scholar 

  4. Coward JK, Paramaswaran KN, Cashmore AR and Bertino JR (1974) Biochem. 13:3899–3903.

    Article  CAS  Google Scholar 

  5. Coward JK, Chello PL, Cashmore AR, Paramaswaran KN, De Angelis LM and Bertino JR (1975) Biochem. 14:1548–1552.

    Article  CAS  Google Scholar 

  6. Bertino JR, Coward JK, Cashmore A, Chello P, Panichajakul S, Horvath CG and Stort RW (1976) Biochem. Soc. Transactions 4:853–856.

    CAS  Google Scholar 

  7. Dolnick BJ and Cheng YC (1978) J. Biol. Chem. 253:3563–3567.

    PubMed  CAS  Google Scholar 

  8. Cheng YC, Szeto DW, Dolnick BJ, Rosowsky A, Cheng-Sein Y, Modest EJ, Piper JR, Temple Jr C, Elliot RD, Rose JD and Montgomery JA (1979) In Chemistry and Biology of Pteridines, Kisliuk and Brown (eds), Elsevier North Holland, Amsterdam, pp. 377–381.

    Google Scholar 

  9. Baggott JE and Krumdieck CL (1979) Biochem. 18:1036–1041.

    Article  CAS  Google Scholar 

  10. McGuire JJ, Hsieh P, Coward JK and Bertino JR (1980) J. Biol. Chem. 255:5776–5788.

    PubMed  CAS  Google Scholar 

  11. Baugh CM, Krumdieck CL and Nair MG (1973) Biochan. Biophys. Res. Commun. 52:27–34.

    Article  CAS  Google Scholar 

  12. Nair MG and Baugh CM (1973) Biochan. 12 :3923–3927.

    Article  CAS  Google Scholar 

  13. Whitehead VM (1973) Clin. Res. 21:655.

    Google Scholar 

  14. Brown JP, Davidson GE, Weir DG and Scott JM (1974) Int. J. Biochem: 5:727–733.

    Article  CAS  Google Scholar 

  15. Shin YS, Buehring KU and Stokstad ELR (1974) J. Biol. Chem. 249:5772–5777.

    PubMed  CAS  Google Scholar 

  16. Whitehead VM, Perrault MM and Stelcner S (1975) Cancer Res. 35:2985–2990.

    PubMed  CAS  Google Scholar 

  17. Whitehead VM, Perrault MM and Stelcner S (1976) In Chemistry and Biology of Pteridines, W. Pfleiderer (ed), Walter de Gruyter, Berlin, pp. 475–483.

    Google Scholar 

  18. Jacobs SA, Adamson RH, Chabner BA, Derr CJ and Johns DG Biochem. Biophys. (1975) Res. Commun. 63:692–698.

    CAS  Google Scholar 

  19. Whitehead VM (1977) Cancer Res. 37:407–412.

    Google Scholar 

  20. Gewirtz DA, White JC, Randolph JK and Goldman ID (1979) Cancer Res. 39:2914–2918.

    PubMed  CAS  Google Scholar 

  21. Gewirtz DA, White JC, Randolph JK and Goldman ID (1980) Cancer Res. 40:573–578.

    PubMed  CAS  Google Scholar 

  22. Rosenblatt DS, Whitehead VM, Dupont MM, Vuchich MJ and Vera N (1978) Mol. Pharmacol. 14:210–214.

    PubMed  CAS  Google Scholar 

  23. Rosenblatt DS, Whitehead VM, Vera N, Pottier A, Dupont MM and Vuchich MJ (1978) Mol. Pharmacol. 14:1143–1147.

    PubMed  CAS  Google Scholar 

  24. Galivan J (1979) Cancer Res. 39:735–743.

    PubMed  CAS  Google Scholar 

  25. Whitehead VM and Rosenblatt DS (1979) In Chemistry and Biology of Pteridines, Kisliuk RL and Brown GM (ed), Elsevier/North Holland, NY, pp. 689–694.

    Google Scholar 

  26. Schilsky RL, Bailey BD and Chabner BA (1980) Proc. Nat. Acad. Sci. 77:2919–2922.

    Article  PubMed  CAS  Google Scholar 

  27. Galivan J (1980) Mol. Pharmacol. 17:105–110.

    PubMed  CAS  Google Scholar 

  28. Rosenblatt DS, Whitehead VM, Vuchich MJ, Pottier A, Matiaszuk NV and Beaulieu D (1981) Mol. Pharmacol. 19:87–97.

    PubMed  CAS  Google Scholar 

  29. Jacobs SA, Derr JD and Johns DG (1977) Biochem. Pharmacol. 26:2310–2313.

    Article  PubMed  CAS  Google Scholar 

  30. Witte A, Whitehead VM, Rosenblatt DS and Vuchich MJ (1980) Dev. Pharmacol. Ther. 1:40–46.

    PubMed  CAS  Google Scholar 

  31. Fyfe MJ and Goldman ID (1973) J. Biol. Chem. 248:5067–5073.

    PubMed  CAS  Google Scholar 

  32. Rosenblatt DS and Whitehead VM Methotrexate polyglutamates in cultured human cells. This volume (supply reference please).

    Google Scholar 

  33. Goldman ID, Lichtenstein NS and Oliverio VT (1968) J. Biol. Chem. 243:5007–5017.

    PubMed  CAS  Google Scholar 

  34. Goldman ID, Gupta V and White JC (1976) Cancer Res. 36:276–279.

    PubMed  CAS  Google Scholar 

  35. Publication #81012 from the McGill University-Montreal Children’s Hospital Research Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Whitehead, V.M., Rosenblatt, D.S. (1983). Methotrexate Metabolism by Bone Marrow Cells from Patients with Leukemia. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics