Skip to main content

An Introduction to Electron Energy-Loss Spectroscopy

  • Chapter

Abstract

Electron energy-loss spectroscopy (EELS) involves analyzing the energy distribution of initially monoenergetic electrons, after they have interacted with a specimen. This interaction may take place within a few atomic layers, as when a beam of low-energy (100–1000 eV) electrons is “reflected” from a solid surface. Because high voltages are not involved, the apparatus is relatively compact, but the low penetration depth implies the use of ultrahigh vacuum; otherwise information is obtained mainly from the carbonaceous or oxide layers on the specimen’s surface. At these low primary energies, a monochromator can be used to reduce the energy spread of the primary beam to a few millielectron volts (Ibach, 1991), and provided the spectrometer has a comparable resolution, the spectrum contains features characteristic of energy exchange with vibrational modes of surface atoms, as well as valence-electron excitation in these atoms. The technique is therefore referred to as high-resolution electron energy-loss spectroscopy (HREELS) and is used for studying the physics and chemistry of surfaces and of adsorbed atoms or molecules. Although it is an important tool of surface science, HREELS uses concepts which are substantially different to those involved in electron-microscope studies, so it will not be discussed further in the present volume. The physics and instrumentation involved are dealt with by Ibach and Mills (1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Reimer, L. (1993) Transmission Electron Microscopy, third edition. Springer Series in Optical Sciences, Vol. 36, Springer-Verlag, New York.

    Google Scholar 

  • Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York.

    Google Scholar 

  • Spence, J. C. H. (1988a) Experimental High-Resolution Electron Microscopy, second edition. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Spence, J. C. H. (1988b) Inelastic electron scattering. In High-Resolution Transmission Electron Microscopy and Associated Techniques, ed. P. Buseck, J. Cowley, and L. Eyring, Oxford University Press, New York, pp. 129 - 189.

    Google Scholar 

  • Wang, Z. L. (1996) Reflection Electron Microscopy and Spectroscopy for Surface Analysis. Cambridge University Press, U.K.

    Book  Google Scholar 

  • Williams, D. B. (1987) Practical Analytical Electron Microscopy in Materials Science, revised edition. Techbooks, Herndon, Virginia.

    Google Scholar 

  • Hren, J. J., Goldstein, J. I., and Joy, D. C. eds. (1979) Introduction to Analytical Electron Microscopy, Plenum Press, New York.

    Google Scholar 

  • Joy, D. C., Romig, A. D., and Goldstein, J. I. eds. (1986) Principles of Analytical Electron Microscopy, Plenum Press, New York.

    Google Scholar 

  • Lyman, C. E., Newbury, D. E., Goldstein, J. I., Williams, D. B., Romig, A. D.. Armstrong, J. T., Echlin, P., Fiori, C. E., Joy, D. C., Lifshin, E., and Peters, K.-R. (1990) Scanning Electron Microscopy, X-ray Microanalysis, and Analytical Electron Microscopy: a Laboratory Workbook, Plenum Press, New York.

    Google Scholar 

  • Fitzgerald, A. G., Storey, B. J., and Fabian, D., eds. (1992) Quantitative Microbeam Analysis, Scottish Universities Summer School in Physics, Edinburgh and Institute of Physics Publishing, Bristol and Philadelphia.

    Google Scholar 

  • Leapman, R. D., and Silcox, J. (1979) Orientation dependence of core edges in electron energy-loss spectra from anisotropic materials. Phys. Rev. Lett. 42, 1361 - 1364.

    Google Scholar 

  • Maher, D. M., Joy, D. C., Egerton, R. F., and Mochel, P. (1979) The functional form of energy-differential cross sections for carbon using transmission electron energy-loss spectroscopy. J. Appl. Phys. 50, 5105 - 5109.

    Article  CAS  Google Scholar 

  • Joy, D. C., and Maher, D. M. (1980c) Electron energy-loss spectroscopy. J. Phys. E. (Sci. Instrum.) 13, 261 - 270.

    Article  Google Scholar 

  • Isaacson, M. (1981) All you might want to know about ELS (but were afraid to ask): A tutorial. In Scanning Electron Microscopy, SEM Inc., (A. M. F. O’Hare, Illinois,) Part 1, pp. 763 - 776.

    Google Scholar 

  • Gorlen, K. E., Barden, L. K., DelPriore, J. S., Fiori, C. E., Gibson, C. G., and Leapman, R. D. (1984) Computerized analytical electron microscope for elemental imaging. Rev. Sci. Instrum. 55, 912 - 921.

    Article  CAS  Google Scholar 

  • Zaluzec, N. J. (1988) A beginner’s guide to electron energy loss spectroscopy. EMSA Bull. 16, 58-63, 72 - 80.

    Google Scholar 

  • Egerton, R. F. (1992b) Electron energy-loss spectroscopy—EELS. In Quantitative Microbeam Analysis, ed. A. G. Fitzgerald, B. E. Storey, and D. Fabian, SUSSP, Edinburgh, and IOP, Bristol, pp. 145 - 168.

    Google Scholar 

  • Egerton, R. F. (1984a) Parallel-recording systems for electron energy-loss spectroscopy (EELS). J. Electron Microsc. Tech. 1, 37 - 52.

    Article  CAS  Google Scholar 

  • Marton, L., Leder, L. B., and Mendlowitz, H. (1955) Characteristic energy losses of electrons in solids. Advances in Electronics and Electron Physics VII, Academic Press, New York, pp. 183 - 238.

    Google Scholar 

  • Raether, H. (1965) Solid State Excitations by Electrons. Springer Tracts in Modern Physics, Vol. 38, Springer-Verlag, Berlin, pp. 84 - 157.

    Google Scholar 

  • Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K. (1970) Optical constants of solids by electron spectroscopy. Springer Tracts in Modern Physics, Springer-Verlag, New York, Vol. 54, pp. 78 - 135.

    Google Scholar 

  • Raether, H. (1980) Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, Vol. 88, Springer-Verlag, New York.

    Google Scholar 

  • Schattschneider, P. (1986) Fundamentals of Inelastic Electron Scattering, Springer-Verlag, Vienna.

    Book  Google Scholar 

  • Reimer, L. (editor) (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, Vol. 71, Springer-Verlag, Berlin.

    Google Scholar 

  • Spence, J. C. H., and Zuo, J. M. (1992) Electron Microdiffraction. Plenum Press, New York. Spence, J. C. H., Reese, G., Yamamoto, N., and Kurizki, G. (1983) Coherent bremsstrahlung peaks in x-ray microanalysis spectra, Phil. Mag. B48, L39 — L43.

    Google Scholar 

  • Su, D. S., Wang, H. F., and Zeitler, E. (1995) The influence of plural scattering on EELS elemental analysis. Ultramicroscopy, 59. 181 - 190.

    Article  CAS  Google Scholar 

  • Zaluzec, N.J. (1992) Electron energy loss spectroscopy of advanced materials. In Transmission Electron Energy Loss Spectroscopy in Materials Science, ed. M. M. Disko, C. C. Ahn, and B. Fulz, The Metals Society, Warrendale, Pennsylvania, pp. 241 - 266.

    Google Scholar 

  • Ibach, H., and Mills, D. L. (1982) Electron Energy-Loss Spectroscopy and Surface Vibrations, Academic Press, New York.

    Google Scholar 

  • Fink, M., and Kessler, J. (1967) Absolute measurements of elastic cross section for small-angle scattering of electrons from N2 and 02. J. Chem. Phys. 47, 1780 - 1782.

    Article  CAS  Google Scholar 

  • Hitchcock, A. P. (1989) Electron-energy-loss-based spectroscopies: a molecular viewpoint. Ultramicroscopy 28, 165 - 183.

    Article  Google Scholar 

  • Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York.

    Google Scholar 

  • Bracewell, R. N. (1978) The Fourier Transform and its Applications. McGraw-Hill, New York. Bravman, J. C., and Sinclair, R. (1984) The preparation of cross-section specimens for transmission electron microscopy. J. Electron Microscope Technique 1, 53 - 61.

    Google Scholar 

  • Ostyn, K. M., and Carter, C. B. (1982) Effects of ion-beam thinning on the structure of NiO. In Electron Microscopy-1982, 10th Int. Cong., Deutsche Gesellschaft für Elektronenmikroskopie, Part 1, pp. 191 - 192.

    Google Scholar 

  • Okamoto, J. K., Ahn, C. C. and Fultz, B. (1991) EXELFS analysis of Al, Fe L23 and Pd M45 edges. In Microbeam Analysis-1991, ed. D. G. Howitt, San Francisco Press, San Francisco, pp. 273 - 277.

    Google Scholar 

  • Ball, M. D., Malis, T. F., and Steele, D. (1984) Ultramicrotomy as a specimen preparation technique for analytical electron microscopy. In Analytical Electron Microscopy-1984, ed. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, pp. 189 - 192.

    Google Scholar 

  • Salisbury, I. G., Timsit, R. S., Berger, S. D., and Humphreys, C. J. (1984) Nanometer scale electron beam lithography in inorganic materials. Appl. Phys. Lett. 45, 1289 - 1291.

    Article  CAS  Google Scholar 

  • Tucker, D. S., Jenkins, E. J., and Hren, J. J. (1985) Sectioning spherical aluminum oxide particles for transmission electron microscopy. J. Electron Microscope Tech. 2, 29 - 33.

    Article  CAS  Google Scholar 

  • Hines, R. L. (1975) Graphite crystal film preparation by cleavage. J. Microsc. 104, 257 - 261.

    Article  Google Scholar 

  • McCaffrey, J. P. (1993) Improved TEM samples of semiconductors prepared by a small-angle cleavage technique. Microsc. Res. Technique 24, 180 - 184.

    Article  CAS  Google Scholar 

  • Moharir, A. V., and Prakash, N. (1975) Formvar holey films and nets for electron microscopy. J. Phys. E 8, 288 - 290.

    Article  PubMed  CAS  Google Scholar 

  • Reichelt, R., and Engel, A. (1984) Monte-Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13, 279 - 294.

    Article  CAS  Google Scholar 

  • Baumeister, W., and Hahn, M. (1976) An improved method for preparing single-crystal specimen supports: H202 exfoliation of vermiculite. Micron 7, 247 - 251.

    Google Scholar 

  • Chen, C. H., Silcox, J., and Vincent, R. (1975) Electron energy losses in silicon: Bulk and surface plasmons and Cerenkov radiation. Phys. Rev. B 12, 64 - 71.

    Article  CAS  Google Scholar 

  • Craven, A. J., Cluckie, M. M., Duckworth, S. P., and Baker, T. N. (1989) Analysis of small vanadium carbide precipitates using electron energy loss spectroscopy. Ultramicroscopy 28, 330 - 334.

    Article  CAS  Google Scholar 

  • Tatlock, G. J., Baxter, A. G., Devenish, R. W., and Hurd, T. J. (1984) EELS analysis of extracted particles from steels. In Analytical Electron Microscopy-1984, ed. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, pp. 227 - 230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Egerton, R.F. (1996). An Introduction to Electron Energy-Loss Spectroscopy. In: Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5099-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5099-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5101-7

  • Online ISBN: 978-1-4757-5099-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics