Skip to main content

The Nature of the Electrical Conductivity of Vitreous Semiconductors

  • Chapter
Electrical Conductivity of Vitreous Substances
  • 22 Accesses

Abstract

The band theory of conduction is based on the assumption of a perfect crystalline structure of solids. Experimental investigations of the conductivity of liquids and amorphous bodies have shown that this condition is not always satisfied [1]. The fact that long-range order is not essential, and that the electron energy spectrum remains unchanged on melting if short-range order is retained, has now conferred primary importance on problems relating to structural coordination numbers and the nature of the chemical bonds in semiconductors [2, 3], Even at the time when Wilson first postulated a band theory [4], Le Blanc had suggested that there was a correlation between electronic conduction and the covalent nature of the chemical bond and had noted that chemical compounds with well-defined polar-ionic bonds in the lattice exhibit ionic conduction [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Goryunova and B. T. Kolomiets, Izv. Akad. Nauk., SSSR, ser. fiz., 20:1496 (1957);

    Google Scholar 

  2. N. A. Goryunova and B. T. Kolomiets, Zh. Tekhn. Fiz., 28:1922 (1958);

    Google Scholar 

  3. A. R. Regel’, Abstract of Doctoral Dissertation, Leningr. Gos. Univ. (1957).

    Google Scholar 

  4. A. F. Ioffe, Semiconductors in Modern Physics, Izd. Akad. Nauk., SSSR, Moscow-Leningrad (1954);

    Google Scholar 

  5. A. F. Ioffe, Zh. Tekhn. Fiz., 27:1153 (1957);

    Google Scholar 

  6. A. F. Ioffe, Fiz. Tverd. Tela, 1:157 (1959);

    Google Scholar 

  7. A. F. Ioffe and A. R. Regel’, Progress in Semiconductors, 4:239 (1960).

    Google Scholar 

  8. Semiconductors, V. P. Zhuze (editor), IL, Moscow (1960).

    Google Scholar 

  9. A. H. Wilson, Proc. Roy. Soc, A133-.458 (1931).

    Article  Google Scholar 

  10. M. Le Blanc and H. Sachse, Phys. Z., 32:887 (1931).

    Google Scholar 

  11. H. Krebis, Z. anorg. allg. Chem., 278:82 (1955);

    Article  Google Scholar 

  12. E. Mooser and W. B. Pearson, J. Elec. tronics, 1:629 (1956);

    Google Scholar 

  13. E. Mooser and W. B. Pearson, Canad. J. Phys., 34:1369 (1956).

    Article  Google Scholar 

  14. Ya. I. Frenkel’, Introduction to the Theory of Metals,, Fizmatizdat, Moscow (1958).

    Google Scholar 

  15. H. Krebs, Acta Cryst., 9:95 (1956).

    Article  Google Scholar 

  16. R. L. Myuller, Zh. Fiz. Khim., 28:1193 (1954);

    Google Scholar 

  17. R. L. Myuller, Zh. Prikl. Khim., 38:1077 (1955);

    Google Scholar 

  18. R. L. Myuller, Izv. Akad. Nauk SSSR, ser. fiz., 4:607 (1940), • this volume, p. 170; in: The Structure of Glass, Vol. 2, Consultants Bureau, New York (1960), p. 50.

    Google Scholar 

  19. L. A. Baidakov, Z. U. Borisova, and R. L. Myuller, Zh. Prikl. Khim., 34:2446 (1961), • this volume, p. 133.

    Google Scholar 

  20. A. R. Hippel, J. Chem. Phys., 16:372 (1948).

    Article  Google Scholar 

  21. P. Rutschi, Z. phys. Chem., 14:277 (1958).

    Article  Google Scholar 

  22. S. Z. Roginskii and Yu. L. Khait, Dokl. Akad. Nauk., SSSR, 130:366 (1960).

    Google Scholar 

  23. R. L. Myuller, Zh. Tekhn. Fiz., 25:246, 2428 (1955), • this volume, pp. 24, 61.

    Google Scholar 

  24. H. W. Henkels, J. Appl. Phys., 21:725 (1950).

    Article  Google Scholar 

  25. T. S. Moss, Photoconductivity in the Elements, London (1952).

    Google Scholar 

  26. F. Eckart, in: Halbleiterprobleme, Vol. 2, W. Schottky (editor), Braunschweig (1955), p. 69.

    Chapter  Google Scholar 

  27. A. A. Vaipolin and E. A. Porai-Koshits, Fiz. Tverd. Tela., 2:1656 (1959).

    Google Scholar 

  28. H. Krebs, and F. Schultze Gebhardt, Acta Cryst., 8:412 (1955).

    Article  Google Scholar 

  29. S. Dobinskii and J. Wesolowskii, Bull. Int. Acad., Polon. Sci. Lett., 10–11A:449 (1936).

    Google Scholar 

  30. R. L. Myuller and T. P. Markova, Vestn. Leningr. Gos. Univ., Vol. 17, No. 4, Iss. 1, p.75 (1962).

    Google Scholar 

  31. L. Reimer, Z. Naturforsch., 13a:536 (1958).

    Google Scholar 

  32. H. Richter and G. Commel, Z. Naturforsch., 12a:996 (1957).

    Google Scholar 

  33. M. Ya. Kushnerov, V. R. Linde, and S. Z. Roginskii, Fiz. Tverd. Tela, 3:384 (1961).

    Google Scholar 

  34. E. J. W. Vervey, P. W. Haaijam, F. S. Romeijn, and G. W. van Oosterhout, Philips Res. Rep., 5:173 (1950).

    Google Scholar 

  35. I. T. Sheftel’, A. I. Zaslavskii, E. V. Kurlina, and T. I. Tekster-Proskuryakova, Fiz. Tverd. Tela. 1:227 (1959).

    Google Scholar 

  36. R. L. Myuller, Zh. Tekhn. Fiz., 25:9, 1556 (1955), • this volume, p. 33;

    Google Scholar 

  37. R. L. Myuller, Izv. Tomsk. Politekhn. Inst., 91:239 (1956).

    Google Scholar 

  38. S. L. Altmann, C. A. Coulson, and W. Hume-Rothery, Proc. Royal Soc, A240:145 (1957);

    Article  Google Scholar 

  39. T. A. Kontorova, Fiz. Tverd. Tela, 1:1761 (1959).

    Google Scholar 

  40. F. J. Morin, Bell System Tech. J., 37, 1047 (1958).

    Article  Google Scholar 

  41. A. R. von Hippel, Ergebn. Ex. Naturwiss., 14:79 (1935);

    Article  Google Scholar 

  42. A. R. von Hippel, Z. Phys., 101:680 (1936);

    Article  Google Scholar 

  43. A. R. von Hippel, Dielectrics and Waves, New York-London (1954);

    Google Scholar 

  44. R. R. Heikes and W. D. Johnston, J. Chem. Phys., 26:582 (1957);

    Article  Google Scholar 

  45. R. R. Heikes and W. D. Johnston, J. Phys. Chem. Solids, 7:1 (1958).

    Article  Google Scholar 

  46. Ya. I. Frenkel’, Z. Phys., 35:652 (1926);

    Article  Google Scholar 

  47. W. Jost, J. Chem. Phys., 1:466 (1933);

    Article  Google Scholar 

  48. R. L. Myuller, Zh. Fiz. Khim., 6:616 (1935);

    Google Scholar 

  49. R. L. Myuller, Fiz. Tverd. Tela, 2:1333 (1960);

    Google Scholar 

  50. R. L. Myuller, Fiz. Tverd. Tela, 2:103 (1935);

    Google Scholar 

  51. R. L. Myuller, The Structure of Glass, Vol. 2, Consultants Bureau, New York, (1960), p. 215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myuller, R.L. (1971). The Nature of the Electrical Conductivity of Vitreous Semiconductors. In: Electrical Conductivity of Vitreous Substances. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5062-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5062-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5064-5

  • Online ISBN: 978-1-4757-5062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics