Skip to main content

Toward an Understanding of Nucleotide Excision Repair in Yeast: A Summary of Recent Progress

  • Chapter
DNA Damage and Repair
  • 132 Accesses

Abstract

With its established classical and molecular genetics, and emerging biochemistry, the yeast Saccharoamyyces cerevisiae is an ideal organism in which to study eukaryotic DNA metabolism. The excision repair of DNA damage in yeast is a complex process, controlled by a number of different genes in the so-called RAD3 epistasis group. Mutations at any of approximately 12 independent loci in this epistasis group cause cells to become abnormally sensitive to killing by ultraviolet light on or DNA damaging chemicals (for recent reviews on DNA repair in yeast see Haynes and Kunz, 1981 and Friedberg, 1988). For 5 of these loci (RAD1, RAD2, RAD3, RAD4 and RAD10) mutations completely block the ability of cells to incise DNA in response to damage (Reynolds and Friedberg, 1981; Wilcox and Prakash, 1981). In the other 7 genes (RAD7, RAD14, RAD16, RAD23, RAD24, CDC8 and MMS19) mutations impair, but do not completely block this process. It is the goal of this and of other laboratories to clone the yeast genes involved in excision repair, with particular emphasis on the 5 genes which appear to be absolutely required for this process. The cloned genes can then be used to overexpress and purify specific Rad proteins, and hence to attempt to understand the biochemistry of eukaryotic nucleotide excision repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Fleer, R., Nicolet, C.M., Pure, G.A., and Friedberg, E.C. 1987a. The RAD4 gene of Saccharomyces cerevisiae: Molecular cloning and partial characterization of a gene which is inactivated in E. coli. Mol Cell. Biol. 7: 1180–1192.

    Google Scholar 

  • Fleer, R., Siede, W., and Friedberg, E.C. 1987b. The RAD4 gene of S. cerevisiae: Characterization of its mutational inactivation in E. coli and of rad4 mutant alleles. J. Bacteriol., in press.

    Google Scholar 

  • Foury, F., and Lahaye, A. 1987. Cloning and sequencing of the PIF gene involved in repair and recatbination of yeast mitochondrial DNA. EMBO J. 6: 1441–1449.

    CAS  Google Scholar 

  • Friedberg, E.C. 1988. DNA Repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev., in press.

    Google Scholar 

  • Higgins, D.R., Prakash, S., Reynolds, P., Polakowska, R., Wehandr, S., and Prakash, L. 1983a. Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants Proc. Natl. Acad. Sci. USA 80: 5680–5684.

    Google Scholar 

  • Higgins, D.R., Prakash, L., Reynolds, P., and Prakash, S. 1984. Isolation and Characterization of the RAD2 gene of Saccharcmyoe’ cerevisiae. Gene 30: 121–128.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D.R., Prakash, S., Reynolds, P., and Prakash, L. 1983b. Molecular cloning and characterization of the RAD1 gene of Saccharanyces cerevisiae. Gene 26: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, M.F., and Malone, R.E. 1987. Hyper-mutation caused by the reml mutation in yeast is not dependent on error-prone or excision repair. Mutat. Res. 178: 201–210.

    Google Scholar 

  • Keil, R.L., and Roeder, G.S. 1984. Cis-acting, recanbination stimulating activity in a fragment of the ribosanal DNA of S. cerevisiae. Cell 39: 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Madura, K., and Prakash, S. 1986. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae. J. Bacterial. 166: 914–923.

    CAS  Google Scholar 

  • Malone, R.E., and Hoekstra, M.F. 1984. Relationships between a hyper-rec mutation (reml) and other recanhination and repair genes in yeast. Genetics 107: 33–48.

    PubMed  CAS  Google Scholar 

  • Nagpal, M.L., Higgins, D.R., and Prakash, S. 1985. Expression of the RAD1 and RAD3 genes of Saccharanyces cerevisiae is not affected by DNA damage or during cell division cycle. Mol. Gen. Genet. 199: 59–63.

    Google Scholar 

  • Naumovski, L., Chu, G., Berg, P., and Friedberg, E.C. 1985. RAD3 gene of Saccharomyces cerevisiae: nucleotide sequence of wild-type and mutant alleles, transcript mapping and aspects of gene regulation. Mol. Cell. Biol. 5: 17–26.

    Google Scholar 

  • Naumovski, L., and Friedberg, E.C. 1982. Molecular cloning of eucaryotic genes required for excision repair of W-irradiated DNA: isolation and partial characterization of the RAD3 gene of Saccharomyces cerevisiae. J. Bacteriol. 152: 323–331.

    PubMed  CAS  Google Scholar 

  • Naumovski, L., and Friedberg, E.C. 1983. A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80: 4818–4821.

    Google Scholar 

  • Naumovski, L., and Friedberg, E.C. 1984. Sacchararyces cerevisiae RAD2 gene: isolation, subcloning and partial characterization. Mol. Cell. Biol. 4: 290–295.

    Google Scholar 

  • Naumovski, L., and Friedberg, E.C. 1986. Analysis of the essential and excision repair functions of the RAD3 gene of Saccharatyces cerevisiae by mutagenesis. Mol. Cell. Biol. 6: 1218–1227.

    Google Scholar 

  • Naumovski, L., and Friedberg, E.C. 1987. The RAD3 gene of Saccharomyces cerevisiae: Isolation and characterization of a temperature-sensitive mutant in the essential function and of extra-genic suppressors of this mutant. Mol. Gen. Genet., in press.

    Google Scholar 

  • Nicolet, C.M., Chenevert, J.M., and Friedberg, E.C. 1985. The RAD2 gene of Sacchardmyces cerevisiae: nucleotide sequence and transcript mapping. Gene 36: 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Perozzi, G., and Prakash, S. 1986. RAD7 gene of Sacchararyces cerevisiae: transcripts, nucleotide sequence analysis and functional relationship between the RAD7 and RAD23 gene product. Mol. Cell. Biol. 6: 1497–1507.

    Google Scholar 

  • Prakash, L., Durnais, D., Polakowska, R., Perozzi, G., and Prakash, S. 1985. Molecular cloning of the RAD10 gene of Saccharcnyces cerevisiae. Gene 34: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Pure, G.A., Robinson, G.W., Naumovski, L., and Friedberg, E.C. 1985. Partial suppression of an ochre mutation in Saccharomyces cerevisiaP by multicopy plasmids containing a normal yeast tRNA/GIn gene. J. Mol. Biol. 183: 31–42.

    Google Scholar 

  • Reynolds, P., Higgins, D.R., Prakash, L., and Prakash, S. 1985. The nucleotide sequence of the RAD3 gene of Saccharanyces cerevisiae: a potential adenine nucleotide binding amino acid sequence and a onessential acidic carboxyl terminal region. Nucleic Acids Res. 13: 2457–2472.

    Article  Google Scholar 

  • Reynolds, P., Prakash, L., Dumais, D., Perozzi, G., and Prakash, S. 1985. Nucleotide sequence of the RAD10 gene of Saccharanyces cerevisiae. E4BO J. 4: 3549–3552.

    CAS  Google Scholar 

  • Reynolds, P., Prakash, L., and Prakash, S. 1987. Nucleotide sequence and functional analysis of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1012–1020.

    Google Scholar 

  • Reynolds, R.J., and Friedberg, E.C. 1981. Molecular mechanism of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J. Bacterial. 146: 692–704.

    CAS  Google Scholar 

  • Robinson, G.W., Nicolet, C.M., Kalainov, D., and Friedberg, E.C. 1986. A Yeast excision repair gene is inducible by DNA damaging agents. Proc. Natl. Acad. Sci. USA. 83: 1842–1846.

    Google Scholar 

  • Siede, W., and Eckardt-Schupp, F. 1986. DNA repair genes of Saccharomyces cerevisiae: complementing rad4 amd rev2 mutations by plasmids which cannot be propagated in Escherichia coli. Curr. Genet. 11: 205–210.

    Google Scholar 

  • vanDuin, M., de Wit, J., Odijk, H., Westerveld, A., Yasui, A., Koken, M.H.M., Hoeijmakers, J.H.J., and Bootsma, D. 1986. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RADIO. Cell 44: 913–923.

    Article  CAS  Google Scholar 

  • Voeikel-Meiman, K., Keil, R.L., and Roeder, G.S. 1987. Recanbination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48: 1071–1079.

    Article  Google Scholar 

  • Walker, G.C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60–93.

    Google Scholar 

  • Weiss, W.A., and Friedberg, E.C. 1985. Molecular cloning and characterization of the yeast RADIO gene and expression of RADIO protein in E. coli. EMBO J. 4: 1575–1582.

    CAS  Google Scholar 

  • Yang, E., and Friedberg, E.C. 1984. Molecular cloning and nucleotide sequence analysis of the Saccharomyces cerevisiae RAD1 gene. Mol. Cell. Biol. 4: 2161–2169.

    Google Scholar 

  • Yasui, A.,and Chevallier, M.-R. 1983. Cloning of photoreactivation repair gene and excision repair gene of the yeast Saccharomyces cerevisiae. Curr. Genet. 7:191–194.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Naumovski, L., Siede, W., Weiss, W.A., Friedberg, E.C. (1989). Toward an Understanding of Nucleotide Excision Repair in Yeast: A Summary of Recent Progress. In: Castellani, A. (eds) DNA Damage and Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5016-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5016-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5018-8

  • Online ISBN: 978-1-4757-5016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics