Skip to main content

Discrepancy Theorems via One-Sided Bounds for Potentials

  • Chapter
  • 412 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

In Chapter 2 we obtained discrepancy estimates for the zero distribution of a polynomial p in connection with the equilibrium measure µ L of a Jordan curve or arc L. The basic quantities involved have been the two terms

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS % baaSqaaiaadchacaGGSaGaamitaaqabaGccqGH9aqpdaWfqaqaaiGa % c2gacaGGHbGaaiiEaaWcbaGaamOEaiabgIGiolablkqiJcqabaGcca % WGvbWaaWbaaSqabeaacqaH8oqBdaWgaaadbaGaamitaaqabaWccqGH % sislcaWG2bWaaSbaaWqaaiaadchaaeqaaaaakmaabmaabaGaamOEaa % GaayjkaiaawMcaaaaa!4BA0! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\varepsilon _{p,L}} = \mathop {\max }\limits_{z \in \mathbb{C}} {U^{{\mu _L} - {v_p}}}\left( z \right)$$

and

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS % baaSqaaiaadchacaGGSaGaamitaaqabaGccqGH9aqpcqaH1oqzdaWg % aaWcbaGaamiCaiaacYcacaWGmbaabeaakiabgkHiTiaadwfadaahaa % WcbeqaaiabeY7aTnaaBaaameaacaWGmbaabeaaliabgkHiTiaadAha % daWgaaadbaGaamiCaaqabaaaaOWaaeWaaeaacaWG6bWaaSbaaSqaai % aaicdaaeqaaaGccaGLOaGaayzkaaaaaa!4ADD! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\delta _{p,L}} = {\varepsilon _{p,L}} - {U^{{\mu _L} - {v_p}}}\left( {{z_0}} \right)$$

where z 0 ∈ int L is fixed if L is a curve. In Section 2.3 we have outlined that it is possible to restrict the essential quantities to the outer bounds

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS % baaSqaaiaadchacaGGSaGaamitaaqabaGcdaqadaqaaiaadkhaaiaa % wIcacaGLPaaacqGH9aqpdaWfqaqaaiGac2gacaGGHbGaaiiEaaWcba % GaamOEaiabgIGiolaadYeadaWgaaadbaGaamOCaaqabaaaleqaaOGa % amyvamaaCaaaleqabaGaeqiVd02aaSbaaWqaaiaadYeaaeqaaSGaey % OeI0IaamODamaaBaaameaacaWGWbaabeaaaaGcdaqadaqaaiaadQha % aiaawIcacaGLPaaacaGGSaGaaGjcVlaadkhacqWI7jIzcaaIWaaaaa!544F! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\varepsilon _{p,L}}\left( r \right) = \mathop {\max }\limits_{z \in {L_r}} {U^{{\mu _L} - {v_p}}}\left( z \right),{\kern 1pt} r \succ 0$$

in the case of a Jordan arc. If L is a curve, we replace δ p,L by the smaller inner bound

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS % baaSqaaiaadchacaGGSaGaamitaaqabaGcdaqadaqaaiaadkhaaiaa % wIcacaGLPaaacqGH9aqpdaWfqaqaaiGac2gacaGGHbGaaiiEaaWcba % GaamOEaiabgIGiolaadYeadaqhaaadbaGaamOCaaqaaiabgkHiTaaa % aSqabaGccaWGvbWaaWbaaSqabeaacqaH8oqBdaWgaaadbaGaamitaa % qabaWccqGHsislcaWG2bWaaSbaaWqaaiaadchaaeqaaaaakmaabmaa % baGaamOEaaGaayjkaiaawMcaaiabgkHiTiaadwfadaahaaWcbeqaai % abeY7aTnaaBaaameaacaWGmbaabeaaliabgkHiTiaadAhadaWgaaad % baGaamiCaaqabaaaaOWaaeWaaeaacaWG6bWaaSbaaSqaaiaaicdaae % qaaaGccaGLOaGaayzkaaGaaiilaiaayIW7caaIWaGaeSOEIaNaamOC % aiablQNiWjaaigdaaaa!62DB! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${\delta _{p,L}}\left( r \right) = \mathop {\max }\limits_{z \in L_r^ - } {U^{{\mu _L} - {v_p}}}\left( z \right) - {U^{{\mu _L} - {v_p}}}\left( {{z_0}} \right),{\kern 1pt} 0 \prec r \prec 1$$

where L r is the level line of the conformal mapping φ(z) of int L onto D normalized by φ(z 0) = 0, φ'(z 0) > 0, as in (1.4.5). Then the discrepancy estimates can be formulated in terms of ε p,L (r) + δ p,L (r). In this chapter we shall discuss this approach carefully for general signed measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Historical Comments

  1. V.V. Andrievskii, H.-P. Blatt (1997): Erdfis-Turcin type theorems on piece-wise smooth curves and arcs. J. Approx. Theory, 88: 109–134.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Hüsing (1995): Diskrepanzsätze bei einseitigen Schranken für logarithmische Potentiale. Diplomarbeit, Katholische Universität Eichstätt.

    Google Scholar 

  3. H.-P. Blatt, R. Grothmann (1991): Erdös-Turcin theorems on a system of Jordan curves and arcs. Constr. Approx., 7: 19–47.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.-P. Blatt, H.N. Mhaskar (1993): A general discrepancy theorem. Ark. Mat., 31: 219–246.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Erdös, P. Turân (1948): On a problem in the theory of uniform distribution. I and II. Indag. Math., 10: 370–378, 406–413.

    Google Scholar 

  6. T. Ganelius (1957): Some applications of a lemma on Fourier series. Académie Serbe des Sciences, Publications de l’Institut Mathématique (Belgrade), 11: 9–18.

    MathSciNet  MATH  Google Scholar 

  7. P. Eras, P. Turân (1940): On the uniformly-dense distribution of certain sequences of points. Ann. of Math., 41: 162–173.

    Article  MathSciNet  Google Scholar 

  8. P. Erdös, P. Turân (1950): On the distribution of roots of polynomials. Ann. of Math., 51: 105–119.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Schur (1933): Untersuchungen liber algebraische Gleichungen I. Bemerkungen zu einem Satz von E. Schmidt. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., X: 403–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrievskii, V.V., Blatt, HP. (2002). Discrepancy Theorems via One-Sided Bounds for Potentials. In: Discrepancy of Signed Measures and Polynomial Approximation. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4999-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4999-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3146-7

  • Online ISBN: 978-1-4757-4999-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics