Skip to main content

Phylogenies and the New Evolutionary Synthesis

  • Chapter
Determinism, Holism, and Complexity
  • 174 Accesses

Abstract

The neo-Darwinian theory of evolution is based on the concept that the processes of genetic variation and natural selection, as seen in modern populations, are sufficient to explain the large-scale patterns of diversification of life on Earth. While a neo-Darwinist model treats polygenic traits statistically, as if they resulted from the additive effects of a large number of genes of equivalent phenotypic impact, it describes large-scale phenomena primarily in a historical manner, such that the forces responsible for the origin and persistence of basic body plans, the major changes in structures and ways of life, and the influence of abiotic factors on critical events in the history of life receive scant consideration. This model persists despite evidence from the fossil record and geological dating demonstrating that large-scale patterns and past rates of evolution are not compatible with those extrapolated back from modern populations. In addition an examination of molecular development shows that long-term evolution is not the result of selection of alternative alleles controlling specific traits, or the progressive accumulation of new mutations in an additive fashion, as models used in quantitative genetics suggest. Evolutionary developmental biology and historical biogeography are two disciplines that can allow us to move past this erroneous neo-Darwinian view of evolution. Their success depends on the availability of robust phylogenetic hypotheses and a rigorous application of the comparative method. It is now finally being recognized as the only way to fully explain the patterns and processes that have led to the present diversity of life is a more holistic approach based on robust phylogenies, sound biogeographical data, a good fossil record and molecular developmental information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ArthurW., The Origin of Animal Body Plans, Cambridge University Press, Cambridge 1997.

    Book  Google Scholar 

  2. BriggsJ.C., Global Biogeography, Elsevier, Amsterdam 1995.

    Google Scholar 

  3. Carroll R.L., Patterns and Processes of Vertebrate Evolution, Cambridge University Press, Cambridge 1997.

    Google Scholar 

  4. CarrollR.L., Towards a new evolutionary synthesis,Trends Ecol. Evol. 15 (2000), 27.

    Google Scholar 

  5. Carroll S., Homeotic genes and the evolution of arthropods and chordates,Nature 376 (1995), 479.

    Google Scholar 

  6. DarwinC.R., On the Origin of Species by Means of Natural Selection, John Murray, London 1859.

    Google Scholar 

  7. DawkinsR., The Selfish Gene, Oxford University Press, New York 1976.

    Google Scholar 

  8. DawkinsR., The Extended Phenotype: The Gene as the Unit of Selection, W.H. Freeman and Co., San Francisco 1982.

    Google Scholar 

  9. DobzhanskyT., Genetics and the Origin of Species, Columbia University Press, New York 1937.

    Google Scholar 

  10. EldredgeN., Unfinished Synthesis, Columbia University Press, New York 1985.

    Google Scholar 

  11. Eldredge N, Reinventing Darwin: the Great Evolutionary Debate,John Wiley and Sons, New York 1995.

    Google Scholar 

  12. Erwin D.H., Macroevolution is more than repeated rounds of microevolution,Evol. and Dev. 2 (2000), 78.

    Google Scholar 

  13. ErwinD.H., Anstey R.L., New Approaches to Speciation in the Fossil Record, Columbia University Press, New York 1995.

    Google Scholar 

  14. ErwinD.H., WingS.L., Deep Time: Paleobiology’s Perspective, The Paleontological Society, Lawrence, KS 2000.

    Google Scholar 

  15. FarrisJ.S., The logical basis of phylogenetic analysis, in: “Advances in Cladistics”, N. I. Platnick and V.A. Funk eds., Columbia University Press, New York 1983.

    Google Scholar 

  16. FosterP.L., Adaptive mutation: the uses of adversity,Annu. Rev. Microbiol. 47 (1993), 467.

    Google Scholar 

  17. GilbertS.F., OpitzJ.M., RaffR.A., Resynthesizing evolutionary and developmental biology, Dev. Biol. 173 (1996), 357.

    CAS  Google Scholar 

  18. Goodwin B., How the Leopard Changed its Spots,Charles Scribner and Sons, New York 1994.

    Google Scholar 

  19. Hall B.K., Guest editorial: Evo-devo or devo-evo - does it matter, Evol. and Dev. 2 (2000), 177.

    Google Scholar 

  20. Hallam A., An Outline of Phanerozoic Biogeography, Oxford University Press, Oxford 1994.

    Google Scholar 

  21. Harvey P.H., Pagel M.D., The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford 1991.

    Google Scholar 

  22. Hennig W., Grundzuge einer Theorie der Phylogenetischen Systematik, Deutscher Zentralverlag, Berlin 1950.

    Google Scholar 

  23. Hennig W., Phylogenetic Systematics, University of Illinois Press, Urbana 1966.

    Google Scholar 

  24. HO M.W., Saunders P., Beyond Neo-Darwinism, Academic Press, London 1984.

    Google Scholar 

  25. Humphries C.J., Parenti L.R., Cladistic Biogeography, Oxford University Press, Oxford 1999.

    Google Scholar 

  26. Huxley J., Evolution, the Modern Synthesis,Allen and Unwin, London 1942.

    Google Scholar 

  27. Kauffman S.A., At Home in the Universe, Oxford University Press, Oxford 1995.

    Google Scholar 

  28. Jablonka E., Lamb M.J., Epigenetic Inheritance and Evolution: The Lamarckian Dimension, Oxford University Press, Oxford 1995.

    Google Scholar 

  29. Jablonski D., Erwin D.H., Lipps J.H., Evolutionary Paleobiology, University of Chicago Press, Chicago 1996.

    Google Scholar 

  30. Jackson J.B., Lidgard S., Mckinney F.K., Evolutionary Patterns: Growth, Form and Tempo in the Fossil Record, University of Chicago Press, Chicago 2001.

    Google Scholar 

  31. Lieberman B.S., Paleobiogeography, Kluwer, New York 2000.

    Book  Google Scholar 

  32. Lovelock J.E., The Ages of Gaia: a Biography of our Living Earth Updated and Revised, Norton and Company, New York 1995.

    Google Scholar 

  33. Mckinney M.L., Drake J.A., Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities, Columbia University Press 1998.

    Google Scholar 

  34. Margulis L., Sagan D., Microcosmos: Four Billion Years of Microbial Evolution, Touchstone Book, New York 1991.

    Google Scholar 

  35. Mayr E., Systematics and the Origin of Species, Columbia University Press, New York 1942.

    Google Scholar 

  36. Novacek M.J., Wheeler Q.D., Extinction and Phylogeny, Columbia University Press, New York 1992.

    Google Scholar 

  37. Raff R., The Shape of Life, University of Chicago Press, Chicago 1996.

    Google Scholar 

  38. Ridley M., Evolution, Oxford University Press, Oxford 1997.

    Google Scholar 

  39. Rose M.R., Lauder G.V., Adaptation, Academic Press, San Diego 1996.

    Google Scholar 

  40. Ruddle F.H., Bartels J.L., Bentley K.L., Kappen C., Murtha M.T., Pendleton J.W., Evolution of Hox genes, Ann. Rev. Gen. 28 (1994), 423.

    Article  CAS  Google Scholar 

  41. Sanderson M.J., Hufford L., Homoplasy: The Recurrence of Similarity in Evolution, Academic Press, San Diego 1996.

    Google Scholar 

  42. Santini F., Stellwag E., Phylogeny, fossils and model systems for the study of Hox genes, Mol. Phyl. Evol. (2002), in press.

    Google Scholar 

  43. Santini F., Winterbottom R., Historical Biogeography of Indo-Western Pacific Coral Reef Biota: Is the Indonesian Region a Center of Origin,J. Biogeog. (2002), in press.

    Google Scholar 

  44. Schluter D., The Ecology of Adaptive Radiation, Oxford University Press, Oxford 2000.

    Google Scholar 

  45. Simpson G.G., Tempo and Mode in Evolution, Columbia University Press, New York 1944.

    Google Scholar 

  46. Stellwag E., Hox gene duplication in fish, Cell Dev. Biol. 10 (1999), 531.

    Google Scholar 

  47. Szathm YRY E., Jord Í’N F., Pl’L C., Can genes explain biological complexity, Science 292 (2001), 1315.

    Google Scholar 

  48. Wallace A.R., On the zoological geography of the Malay Archipelago, J. Linn. Soc. London 4 (1860), 172.

    Google Scholar 

  49. Webb C.O., Exploring the phylogenetic structure of ecological communities: an example for rain forest trees, Am. Nat. 156 (2000), 145.

    Google Scholar 

  50. Williams G.C., Adaptation and Natural Selection, Princeton University Press, Princeton 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santini, F. (2003). Phylogenies and the New Evolutionary Synthesis. In: Benci, V., Cerrai, P., Freguglia, P., Israel, G., Pellegrini, C. (eds) Determinism, Holism, and Complexity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4947-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4947-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3394-2

  • Online ISBN: 978-1-4757-4947-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics