Skip to main content
  • 169 Accesses

Abstract

Possibly the most interesting and consistently fluorescing sphalerites are found at Franklin, New Jersey, and the Sterling mine at Ogdensburg, New Jersey. These sphalerites occur as resinous blebs or masses, colored gray, yellow-gray, tan, or pink-tan in ordinary light. In contrast to most of the other numerous and famous fluorescent minerals from these two mines, sphalerite fluoresces best under long wave ultraviolet. Material from Franklin usually fluoresces bright, clear orange with an enduring orange phosphorescence. The fluorescent response of the material from Ogdensburg is more varied. It may be an orange with a slight brown tone, pink-orange, brick red, or orange-yellow. Frequently, the phosphorescence is of the same color. This sphalerite is found with dark green fluorescing willemite, or pink or red fluorescing calcite, and occasionally with a violet fluorescing calcite, all under long wave. Such combinations are extremely attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avouris P. and Morgan T. N. 1981. A tunneling model for the decay of luminescence in inorganic phosphors: the Case of Zn2SiO4Mn. The Journal of Chemical Physics 74: 4347–4355.

    Article  Google Scholar 

  • Banks E. and Schwartz R. W. 1969. Phosphorescence mechanism in CdF2:Eu3. The Journal of Chemical Physics 51: 1956–1959.

    Article  Google Scholar 

  • Blasse G. 1980. The luminescence of closed-shell transition-metal complexes: new developments. Structure and Bonding 42: 1–41.

    Article  Google Scholar 

  • Blasse G. and Bril A. 1967. Investigations on Bi3+-activated phosphors. The Journal of Chemical Physics 48: 217–222.

    Article  Google Scholar 

  • Butler K. H. 1947. Fluorescence of silicate phosphors. Journal of the Optical Society of America 37: 566–571.

    Article  Google Scholar 

  • Curie D. 1960. Luminescence in Crystals. New York: John Wiley & Sons.

    Google Scholar 

  • Dexter D. L. 1952. A theory of sensitized luminescence in solids. The Journal of Chemical Physics 21: 836–850.

    Article  Google Scholar 

  • Duboc C. A. 1956. Nonlinearity in photoconducting phosphors. British Journal of Applied Physics, Supplement 4: 107–111.

    Google Scholar 

  • Engle D. G. and Hopkins B. S. 1925. Studies in luminescence. Journal of the Optical Society of America and the Review of Scientific Instruments 11: 599–606.

    Article  Google Scholar 

  • Etzel, H. W., Schulman, J. H., Ginther, R. J., and Claffy, E. W. 1952. Silver-activated alkali halides. A letter in Physical Review 1063-1064.

    Google Scholar 

  • Fonda G. R. 1939. Characteristics of silicate phosphors. Journal of Physical Chemistry 43: 561–577.

    Article  Google Scholar 

  • Fonda G. R. 1940. The preparation of fluorescent calcite. Journal of Physical Chemistry 44: 435–439.

    Article  Google Scholar 

  • Fonda G. R. 1940. The yellow and red zinc silicate phosphors. Journal of Physical Chemistry 44: 851–861.

    Article  Google Scholar 

  • Fonda G. R. 1949. The enigma of multiple band emission. Journal of the Electrochemical Society 96: 4242–44.

    Google Scholar 

  • Fonda G. R. 1950. Dependence of emission spectra of phosphors upon activator concentration and temperature. Journal of the Optical Society of America 40: 347–352.

    Article  Google Scholar 

  • Fonda G. R. 1956. Energy transfers in the calcium halophosphate phosphors. British Journal of Applied Physics, Supplement 4: 69–73.

    Google Scholar 

  • Fonda G. R. 1956. Two arsenate phosphors and the significance of their emission. Journal of the Electrochemical Society 103: 400–403.

    Article  Google Scholar 

  • Froelich H. C. 1948. Manganese activated calcium silicate phosphors. Journal of the Electrochemical Society 33: 101–113.

    Article  Google Scholar 

  • Gallivan J. B. and Deb S. K. 1973. Photoluminescence of mercurous halides. Journal of Luminescence 6: 77–82.

    Article  Google Scholar 

  • Garlick G. F. J. and Gibson A. F. 1948. The electron trap of luminescence in sulphide and silicate phosphors. Physical Society Proceedings 60: 574–590.

    Article  Google Scholar 

  • Garlick G. F. J. 1949. Luminescent Materials. Oxford: Clarendon Press.

    Google Scholar 

  • Garlick G. F. J. 1956. Absorption, emission and storage of energy in phosphors. British Journal of Applied Physics, Supplement 4: 85–90.

    Google Scholar 

  • Gobrecht H. and Weiss W. 1955. Lumineszenzuntersuchungen an Uranaktivierten Erdalkaliwolframaten und-molybdaten. Zeitschrift für Physik 140: 139–149.

    Article  Google Scholar 

  • Goldberg P. 1966. Luminescence of Inorganic Solids. New York: Academic Press.

    Google Scholar 

  • Goldschmidt V. M. 1954. Geochemistry. Oxford: Clarendon Press.

    Google Scholar 

  • Gorbenko-Germanov D. S. and Zenkova R. A. 1964. On the vibrational structure of the ground and excited levels of UO2 ++ in K4 [UO2(CO3)3]. Optics and Spectroscopy 20: 467–469.

    Google Scholar 

  • Groenink J. A. and Blasse G. 1979. Some new observations on the luminescence of PbMoO4 and PbWO4. Journal of Solid State Chemistry 32: 9–20.

    Article  Google Scholar 

  • Haberlandt H., Hernegger F., and Scheminzky F. 1949. Die Fluoreszenzspektren von Uranmineralien im filtrierten ultravioletten Licht. Spectrochimica Acta 4: 21–35.

    Article  Google Scholar 

  • Halsted R. E., Apple E. F., and Prener J. S. 1959. Two-stage optical excitation in sulfide phosphors. Physical Review Letters 2: 420–421.

    Article  Google Scholar 

  • Hensler J. R. 1959. Chemistry: synthesis of colour centres in silica and their thermoluminescence. Letter in Nature 183:672–673.

    Article  Google Scholar 

  • Hummel F. A. 1961. Cordierite-indialite: a new manganese-activated phosphor. Journal of the Electrochemical Society 108: 809–810.

    Article  Google Scholar 

  • Hunt B. E. and McKeag A. H. 1959. Copper and tin-activated halophosphate phosphors. Journal of the Electrochemical Society 106: 1032–1036.

    Article  Google Scholar 

  • Jaffe P. M. 1964. Iron activated ZnS phosphors. Electrochemical Society 111: 52–61.

    Article  Google Scholar 

  • Jenkins H. G., McKeag A. H., and Ranby P. W. 1949. Alkaline earth halophosphates and related phosphors. Electrochemical Society Journal 96: 1–12.

    Article  Google Scholar 

  • Klasens H. A. 1953. On the nature of fluorescent centers and traps in zinc sulfide. Electrochemical Society Journal 100: 72–80.

    Article  Google Scholar 

  • Klasens H. A., Hoekstra A. H., and Cox A. P. M. 1957. Ultraviolet fluorescence of some ternary silicates activated with lead. Electrochemical Society Journal 104: 93–100.

    Article  Google Scholar 

  • Klick C. C. 1957. Divalent manganese as a luminescent centre. British Journal of Applied Physics, Supplement 4: 74–78.

    Google Scholar 

  • Klick C. C. and Schulman J. H. 1952. On the luminescence of divalent manganese in solids. Journal of the Optical Society of America 42: 910–916.

    Article  Google Scholar 

  • Koda T. and Shionoya S. 1964. Nature of the self-activated blue luminescence center in cubic ZnS:Cl single crystals. Physical Review 136: 541–555.

    Article  Google Scholar 

  • Kotera Y., Yonemura M., and Sekine T. 1961. Activation by anions in the oxy-acid phosphors. Journal of the Electrochemical Society 108: 540–545.

    Article  Google Scholar 

  • Kreidl N. J. 1945. Recent studies on the fluorescence of glass. Journal of the Optical Society of America 35: 249–257.

    Article  Google Scholar 

  • Kroger F. A. and Bakker J. 1941. Luminescence of cerium compounds. Physica 8: 628–646.

    Article  Google Scholar 

  • Kroger F. A. 1947. Tetravalent manganese as an activator in luminescence. Nature 159: 706–707.

    Article  Google Scholar 

  • Kroger F. A. 1947. Luminescence of solid solutions of the system CaMoO4PbMoO4 and of some other systems. Phillips Research Report 2: 183–189.

    Google Scholar 

  • Kroger F. A. and Hellingman J. E. 1948. The blue luminescence of zinc sulfide. Journal of the Electrochemical Society 93: 156–171.

    Article  Google Scholar 

  • Kroger F. A. and Hoogenstraten W. 1948. Decay and quenching of fluorescence in willemite. Physica 14: 425–441.

    Article  Google Scholar 

  • Kroger F. A., Overbeek J. T. G., Goorissen J., and Boomgaard J. van den. 1949. Bismuth as activator in fluorescent solids. Electrochemical Society Journal 96: 132–141.

    Article  Google Scholar 

  • Kroger F. A. and Hellingman J. E. 1949. Chemical proof of the presence of chlorine in blue fluorescent zinc sulfide. Journal of the Electrochemical Society 95: 68–69.

    Article  Google Scholar 

  • Kroger F. A. 1949. A proof of the associated-pair theory for sensitized luminophore. Physica 15: 801–806.

    Article  Google Scholar 

  • Kroger F. A. 1949. Sodium and lithium as activators of fluorescence in zinc sulfide. Journal of the Optical Society of America 39: 670–672.

    Article  Google Scholar 

  • Kroger F. A. and Hoogenstraaten W. 1949. Temperature quenching and decay of fluorescence in zinc-beryllium silicates activated with manganese. Physica 15: 557–568.

    Article  Google Scholar 

  • Kroger F. A. and Hoogenstraaten W. 1950. The location of dissipative transitions in luminescent systems. Physica 16: 30–32.

    Article  Google Scholar 

  • Kroger F. A. 1949. Some Aspects of the Luminescence of Solids. New York: Elsevier.

    Google Scholar 

  • Kroger F. A. and Vink H. J. 1953. The origin of the fluorescence in self-activated ZnS, CdS, and ZnO. The Journal of Chemical Physics 22: 250–252.

    Google Scholar 

  • Leverenz, H. W. 1944. Phosphors versus the periodic system of the elements. Proceedings of the I.R.E. 256-263.

    Google Scholar 

  • Leverenz H. W. 1968. An Introduction to the Luminescence of Solids. New York: Dover Publications Inc.

    Google Scholar 

  • Lewis G. N., Lipkin D., and Magel T. T. 1941. Reversible photochemical processes in rigid media: a study of the phosphorescent state. Journal of the American Chemical Society 63: 3005–3018.

    Article  Google Scholar 

  • Linwood S. H. and Weyl W. A. 1942. The fluorescence of manganese in glasses and crystals. Journal of the Optical Society of America 32: 443–453.

    Article  Google Scholar 

  • Makai E. 1949. High valent manganese as activator of luminescence. Journal of the Electrochemical Society 95: 107–111.

    Article  Google Scholar 

  • Medlin W. L. 1963. Emission centers in thermoluminescent calcite, dolomite, magnesite, aragonite, and anhydrite. Journal of the Optical Society of America 53: 1276–1285.

    Article  Google Scholar 

  • Meixner H. von. 1940. Fluoreszenzanalytische, optische und chemische Beobachtungen an Uranmineralen. Chem. Erde 12: 433–450.

    Google Scholar 

  • Merrill J. B. and Schulman J. H. 1948. The CaSiO3:(Pb + Mn) phospor. Journal of the Optical Society of America 38: 471–479.

    Article  Google Scholar 

  • Millson H. E. and Millson E. M., Jr. 1950. Observations on exceptional duration of mineral phosphorescence. Journal of the Optical Society of America 40(7):430–435.

    Article  Google Scholar 

  • Murata K. J. and Smith R. L. 1946. Manganese and lead as coactivators of red fluorescence in halite. A merican Mineralogist 31: 527–538.

    Google Scholar 

  • Nichols E. L. and Howes H. L. 1926. Note of the rare earths as activators of luminescence. Journal of the Optical Society of America and Review of Scientific Instruments 13: 573–587.

    Article  Google Scholar 

  • Orgel L. E. 1958. Phosphorescence of solids containing the manganous or Ferric ions. Journal of Chemical Physics 23:195–8.

    Google Scholar 

  • Prener J. S. and Williams F. E. 1956. Activator systems in zinc sulfide phosphors. Electrochemical Society Journal 103: 342–346.

    Article  Google Scholar 

  • Pringsheim P. and Vogel M. 1943. Luminescence of Solids and Liquids. New York: Interscience Publishers.

    Google Scholar 

  • Przibram K. 1956. Irradiation Colors and Luminescence. London: Pergamon Press.

    Google Scholar 

  • Przibram K. 1949. The light emitted by europium compounds. Letter in Nature 163:989.

    Article  Google Scholar 

  • Randall J. T. and Wilkins M. H. F. 1941. Phosphorescence and electron traps: I. The study of trap distributions. Proceedings of the Royal Society of London 184: 366–407.

    Google Scholar 

  • Rankama K. and Sahama T. G. 1950. Geochemistry. Chicago: University of Chicago Press.

    Google Scholar 

  • Schein M. and Katz M. L. 1936. Ultra-violet luminescence of sodium chloride. Letter in Nature 138:883.

    Article  Google Scholar 

  • Schulman J. H. 1946. Luminescence of (Zn, Be)2 SiO4:Mn and other manganese-activated phosphors. Journal of Applied Physics 17: 902–908.

    Article  Google Scholar 

  • Schulman J. H., Evans L. W., Ginther R. J., and Murata K. J. 1947. The sensitized luminescence of manganese-activated calcite. Journal of Applied Physics 18: 732–739.

    Article  Google Scholar 

  • Schulman J. H., Ginther R. J., and Klick C. C. 1950. A study of the mechanism of sensitized luminescence of solids. Journal of the Electrochemical Society 97: 123–132.

    Article  Google Scholar 

  • Schulman J. H. 1955. Physical measurements and the nature of the luminescent centers. British Journal of Applied Physics, Supplement 4: 64–69.

    Article  Google Scholar 

  • Seitz F. 1938. Interpretation of the properties of alkali halide-thallium phosphors. Journal of Chemical Physics 6: 150–162.

    Article  Google Scholar 

  • Shionoya S. 1955. Sensitized luminescence of zinc sulfide phosphors activated with copper and manganese. Letter in Journal of Chemical Physics 23:1173.

    Google Scholar 

  • Shionoya S. 1955. Thermoluminescence of zinc sulfide phosphors doubly activated with copper and manganese. Journal of Chemical Physics 23: 1976–1977.

    Article  Google Scholar 

  • Studer F. J. and Fonda G. R. 1949. Optical properties of calcium silicate phosphors. Journal of the Optical Society of America 39: 655–660.

    Article  Google Scholar 

  • Studer F. J. and Rosenbaum A. 1949. The phosphorescence decay of halophosphates and other doubly activated phosphors. Journal of the Optical Society of America 39: 685–689.

    Article  Google Scholar 

  • Suzuki A. and Shionoya S. 1970. Evidence for the pair emission mechanism of the green-Cu luminescence in ZnS. Letter in Journal of Luminescence 3:74–76.

    Article  Google Scholar 

  • Tanaka T. 1924. On the cathodo luminescence of solid solutions of forty-two metals. Optical Society of America Journal 8: 287–318.

    Article  Google Scholar 

  • Williams F. E. 1949. Review of the interpretations of luminescence phenomena. Journal of the Optical Society of America 39: 648–654.

    Article  Google Scholar 

  • Williams F. E. 1955. Theory of activator systems in luminescent solids. British Journal of Applied Physics 6: 97–102.

    Article  Google Scholar 

  • Williams F. E. and Eyring H. 1955. The mechanism of the luminescence of solids. The Journal of Chemical Physics 15: 289–304.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robbins, M. (1983). Fluorescent Minerals of the United States. In: The Collector’s Book of Fluorescent Minerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4792-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4792-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4794-2

  • Online ISBN: 978-1-4757-4792-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics