Skip to main content

The Trichomonad Hydrogenosome

  • Chapter
Biology of Parasitism

Abstract

Trichomonads are deep-branching protists that are thought to be early-diverging eukaryotes (Sogin, 1991). These organisms belong to the phylum Parabasalia which encompasses both non-parasitic and parasitic trichomonads. The two best studied parasitic trichomonads are the cattle-infective parasite, Tritrichomonas foetus and the human-infective parasite, Trichomonas vaginalis. These parasites are flagellated, extracellular organisms that are sexually transmitted and reside in the urogenital tracts of their hosts. Over 150 million cases of human trichomoniasis are reported each year and significant financial losses are frequently suffered due to trichomoniasis in cattle, making these parasites important in both the medical and agricultural communities. Aside from their medical and agricultural importance, a number of unusual biochemical properties of Trichomonas have captured the attention of scientists. The appeal of trichomonads from a biological viewpoint stems, in large part, from properties that reflect both their primitive nature and parasitic lifestyle. For example, trichomonads lack two organelles typically found in eukaryotes, the mitochondrion and the peroxisome, but instead contain an organelle involved in carbohydrate metabolism called the hydrogenosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhmanova, A., Voncken, F., van Alen, T., van Hoek, A., Boxma, B., Vogels, G., Veenhuiss, M., and Hackstein, J. H. P. (1998). A hydrogenosome with a genome. Nature 396, 527–528.

    Article  PubMed  CAS  Google Scholar 

  • Benchimol, M., Almeida, J. C., and de Souza, W. (1996). Further studies on the organization of the hydrogenosome in Tritrichomonas foetus. Tissue Cell 28, 287–99.

    Article  PubMed  CAS  Google Scholar 

  • Benchimol, M., Johnson, P. J., and deSouza, W. (1996). Morphogenesis of the hydrogenosome: An ultrastructural study. Bio. Cell 87, 197–205.

    CAS  Google Scholar 

  • Biagini, G. A., Finlay, B. J., and Lloyd, D. (1997). Evolution of the hydrogenosome. Ferns Microbiol. Lett. 155, 133–140.

    CAS  Google Scholar 

  • Biagini, G. A., vanderGiezen, M., Hill, B., Winters, C., and Lloyd, D. (1997). Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2: A mitochondriallike physiological role. Ferns Microbiol. Lett. 149, 227–232.

    Google Scholar 

  • Bozner, P. (1997). Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J. Parasitol. 83, 224–9.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, P. J., Lahti, C. J., Plumper, E., and Johnson, P. J. (1997). Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 16, 3484–93.

    Article  PubMed  CAS  Google Scholar 

  • Brondijk, T. H., Durand, R., van der Giezen, M., Gottschal, J. C., Prins, R. A., and Fèvre, M. (1996). scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol. Gen. Genet. 253, 315–23.

    Google Scholar 

  • Brui, S., Veltman, R. H., Lombardo, M. C., and Vogels, G. D. (1994). Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. Biochim. Biophys. Acta 1183, 544–6.

    Article  Google Scholar 

  • Bui, E. T., and Johnson, P. J. (1996). Identification and characterization of [Fe]-hydrogenases

    Google Scholar 

  • in the hydrogenosome of Trichomonas vaginalis. Mol. Biochem. Parasitol. 76,305–10. Bui, E. T. N., Bradley, P. J., and Johnson, P. J. (1996). A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Nat. Acad. Sci. USA 93,9651–9656.

    Google Scholar 

  • Carafoli, E. (1987). Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395–433.

    Google Scholar 

  • Cavalier-Smith, T. (1987). The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann. N Y Acad. Sci. 503, 55–71.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C. G., and Roger, A. J. (1995). Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 92, 6518–21.

    Article  PubMed  CAS  Google Scholar 

  • Delgadillo, M. G., Liston, D. R., Niazi, K., and Johnson, P. J. (1997). Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 94, 4716–20.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W. F. (1998). A paradigm gets shifty [news; comment]. Nature 392, 15–6.

    Article  PubMed  CAS  Google Scholar 

  • Embley, T. M., and Hirt, R. P. (1998). Early branching eukaryotes ? Curr. Opin. Genet. Dev. 8, 624–9.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. J., and Fenchel, T. (1989). Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol. Lett. 65, 311–314.

    CAS  Google Scholar 

  • Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P. B. (1982). Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell. Biol. 93, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Germot, A., Philippe, H., and Le Guyader, H. (1997). Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol. Biochem. Parasitol. 87, 159–68.

    Article  PubMed  CAS  Google Scholar 

  • Germot, A., Philippe, H., and Le Guyader, H. (1996). Presence of a mitochondrial-type 70kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Natl. Acad. Sci. USA 93, 14614–7.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, E., Sjöling, S., Tanudji, M., and Whelan, J. (1998). Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38, 3 1138.

    Google Scholar 

  • Gray, M. W., Burger, G., and Lang, B. F. (1999). Mitochondrial evolution. Science 283, 147681

    Google Scholar 

  • Gupta, R. S., and Golding, G. B. (1996). The origin of the eukaryotic cell [see comments]. Trends Biochem. Sci. 21, 166–71.

    CAS  Google Scholar 

  • Hausier, T., Stierhof, Y. D., Blattner, J., and Clayton, C. (1997). Conservation of mitochondria] targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur. J. Cell Biol. 73, 240–251.

    Google Scholar 

  • Heins, L., and Soll, J. (1998). Chloroplast biogenesis: mixing the prokaryotic and the eukaryotic ? Curr. Biol. 8, R215–7.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick, J. P., Hodges, P. E., and Rosenberg, L. E. (1989). Survey of amino-terminal proteolytic cleavage sites in mitochondrial precursor proteins: leader peptides cleaved by two matrix proteases share a three-amino acid motif. Proc. Natl. Acad. Sci. USA 86, 4056–60.

    Article  PubMed  CAS  Google Scholar 

  • Honigberg, B. M., Volkmann, D., Entzeroth, R., Scholtyseck, E. (1984). A freeze-fracture electron microscopy study of Trichomonas vaginalis Donne and Tritrichomonas foetus (Riedmuller). J. Protozool. 31, 116–131.

    PubMed  CAS  Google Scholar 

  • Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D., and Embley, T. M. (1996). Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. B Biol. Sci. 263, 1053–9.

    Article  CAS  Google Scholar 

  • Hrdy, I., and Müller, M. (1995). Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J. Mol. Evol. 41, 388–96.

    Article  PubMed  CAS  Google Scholar 

  • Hrdy, I., and Muller, M. (1995). Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J. Eukaryot. Microbiol. 42, 593–603.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, M. J., Ralphs, J., Dun-ant, L., and Lloyd, D. (1994). Hydrogenosomes in trichomonads are calcium stores and have a transmembrane electrochemical potential. Biochem. Soc. Trans. 22, 324S.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. M., Gorrell, T. E., Müller, M., and Weitzman, P. D. (1991). Hydrogenosomal succinate thiokinase in Tritrichomonas foetus and Trichomonas vaginalis. Biochem. Biophys. Res. Commun. 179, 892–6.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. J., Bradley, P. J., and Lahti, C. J. (1995). Cell biology of trichomonads: protein targeting to the hydrogenosome. In Molecular Approaches to Parasitology, J. C. Boothroyd and R. Komuniecki, eds. ( New York: Wiley-Liss, Inc. ), pp. 399–411.

    Google Scholar 

  • Johnson, P. J., d’ Oliveira, C. E., Gorrell, T. E., and Müller, M. (1990). Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 87, 6097–101.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. J., Lahti, C. J., and Bradley, P. J. (1993). Biogenesis of the hydrogenosome in the anaerobic protist Trichomonas vaginalis. J. Parasitol. 79, 664–70.

    Article  PubMed  CAS  Google Scholar 

  • Keller, G. A., Krisans, S., Gould, S. J., Sommer, J. M., Wang, C. C., Schliebs, W., Kunau, W., Brody, S., and Subramani, S. (1991). Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes. J. Cell Biol. 114, 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Lahti, C. J., Bradley, P. J., and Johnson, P. J. (1994). Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol. Biochem. Parasitol. 66, 309–18.

    Article  PubMed  CAS  Google Scholar 

  • Lahti, C. J., d’ Oliveira, C. E., and Johnson, P. J. (1992). Beta-succinyl-coenzyme-a synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J. Bacteriol. 174, 68226830.

    Google Scholar 

  • Lahti, C. J., and Johnson, P. J. (1991). Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol. Biochem. Parasitol. 46, 307–10.

    Google Scholar 

  • Lake, J. A., and Rivera, M. C. (1994). Was the nucleus the first endosymbiont? [comment]. Proc. Natl. Acad. Sci. USA 91, 2880–1.

    Article  PubMed  CAS  Google Scholar 

  • Lange, S., Rozario, C., and Muller, M. (1994). Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol. Biochem. Parasitol. 66, 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Mai, Z., Ghosh, S., Frisardi, M., Rosenthal, B., Rogers, R., and Samuelson, J. (1999). Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol. Cell Biol. 19, 2198205.

    Google Scholar 

  • Martin, W., and Müller, M. (1998). The hydrogen hypothesis for the first eukaryote [see comments]. Nature 392, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Lahpor, G. A., Kraak, M. N., Gottschal, J. C., and Prins, R. A. (1992). Characterization of an anaerobic fungus from llama faeces. J. Gen. Microbiol. 138, 2235–41.

    Article  PubMed  CAS  Google Scholar 

  • Marvinsikkema, F. D., Kraak, M. N., Veenhuis, M., Gottschal, J. C., and Prins, R. A. (1993). The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp L2 is recognized by antibodies directed against the C-terminal microbody protein targeting signal SKL. Eur. J. Cell Biol. 61, 86–91.

    CAS  Google Scholar 

  • Müller, M. (1980). The hydrogenosome. In The Eukaryotic Microbial Cell, G. W. Gooday, LLoyd, D. and Trinci, A.P.J., ed. ( Cambridge: Cambridge University Press ), pp. 127–142.

    Google Scholar 

  • Müller, M. (1993). The hydrogenosome. J Gen Microbiol 139, 2879–89.

    Article  PubMed  Google Scholar 

  • Paltauf, F., and Meingassner, J. G. (1982). The absence of cardiolipin in hydrogenosomes of Trichomonas vaginalis and Tritrichomonas foetus. J. Parasitol. 68, 949–50.

    Article  PubMed  CAS  Google Scholar 

  • Pfanner, N., Craig, E. A., and Hönlinger, A. (1997). Mitochondrial preprotein translocase. Annu. Rev. Cell. Dev. Biol. 13, 25–51.

    Article  PubMed  CAS  Google Scholar 

  • Roger, A. J., Clark, C. G., and Doolittle, W. F. (1996). A possible mitochondria] gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 93, 14618–22.

    Article  PubMed  CAS  Google Scholar 

  • Roger, A. J., Svärd, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D., and Sogin, M. L. (1998). A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 95, 229–34.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, G., and Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science 271, 1519–26.

    Article  PubMed  CAS  Google Scholar 

  • Sogin, M. L. (1991). Early evolution and the origin of eukaryotes. Curr. Opin. Genet. Dev. 1, 457–63.

    Article  PubMed  CAS  Google Scholar 

  • Tovar, J., Fischer, A. & Clark, G. C. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32, 1013-1021.

    Google Scholar 

  • van der Giezen, M., Rechinger, K. B., Svendsen, I., Durand, R., Hirt, R. P., Fèvre, M., Embley, T. M., and Prins, R. A. (1997). A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol. Microbiol. 23, 11–21.

    Article  PubMed  Google Scholar 

  • vanderGiezen, M., Kiel, J., Sjollema, K. A., and Prins, R. A. (1998). The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr. Genetics 33, 131–135.

    Google Scholar 

  • vanderGiezen, M., Sjollema, K. A., Artz, R. R. E., Alkema, W., and Prins, R. A. (1997). Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408, 147–150.

    Article  CAS  Google Scholar 

  • von Heijne, G., Steppuhn, J., and Hellmann, R. G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dyall, S.D., Johnson, P.J. (2000). The Trichomonad Hydrogenosome. In: Tschudi, C., Pearce, E.J. (eds) Biology of Parasitism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4622-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4622-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4977-6

  • Online ISBN: 978-1-4757-4622-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics