Skip to main content

Combinatoric and Geometric Aspects of Some Probabilistic Choice Models — A Review

  • Chapter
  • 320 Accesses

Part of the book series: Theory and Decision Library ((TDLB,volume 40))

Abstract

Two recent developments in random utility theory are reviewed, with special attention devoted to their combinatoric and geometric underpinnings. One concerns a new class of stochastic models describing the evolution of preferences, and the other some probabilistic models for approval voting. After recalling various commonly used preference relations, we discuss the fundamental property of ‘wellgradedness’ which is satisfied by certain important families of relations, such as the semiorder and the biorder families. The wellgradedness property plays a crucial role in the design of recent stochastic models of preference. Social choice, and approval voting in particular, provide natural arenas for the application of probabilistic models. We examine some partial results regarding the so-called ‘approval voting polytope’ which can be used for the characterization of a particular model of subset choices. We review several families of facets of this polytope and list some unsolved problems. An example illustrates how these geometric results help understand competing models of subset choice.

This paper reviews recent developments in two areas of random utility theory. One concerns a new class of stochastic models describing the evolution of preferences, and the other some probabilistic models for approval voting (cf. Doignon and Falmagne, 1994, Doignon and Falmagne, 1997, Doignon and Regenwetter, 1997, Doi-gnon and Regenwetter, in preparation, Falmagne, 1997, Falmagne and Doignon, 1997, Falmagne and Regenwetter, 1996, Falmagne, Regenwetter and Grofman, 1997, Regenwetter, 1996, Regenwetter, 1997, Regenwetter and Doignon, 1998, Regenwetter, Falmagne and Grofman, 1998, Regenwetter and Grofman, 1998a, Regenwetter and Grofman, 1998b, Regenwetter, Marley and Joe, 1998). Sections 1, 2 and 3 are devoted to the stochastic models and their combinatoric structure, and Sections 4 to 7 review some results on the geometric underpinnings of the approval voting model. Section 8 reviews related recent geometric structures, and the last section provides a conclusion and outlook.

J.-P.D.’s work was partially conducted during a stay at the Institute of Mathematical Behavioral Sciences of the University of California, Irvine. This stay was supported by NSF grant No. SBR 93-07423 to J.-C.F.

J.-C.F.’s work in this area is supported by NSF grant No. SBR 93-07423 to the University of California, Irvine.

M.R. thanks NSF for grant No. SBR 97-30076 which partially supported this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrow, K.J. (1951), Social Choice and Individual Values. Wiley, New-York Brams, S J., and Fishburn, P.C. (1983), Approval Voting. Birkhäuser, Boston.

    Google Scholar 

  • Christof, T. (software), “PORTA - A polyhedron representation transformation algorithm”. Available from ftp://ftp.zib-berlin.de/pub/mathprog/polyth/porta/index.html.

    Google Scholar 

  • Doignon, J.-P. (1988), “Sur les représentations minimales des semiordres et des ordres d’intervalles”, Mathématiques, Informatique et Sciences Humaines 101, 49–59.

    Google Scholar 

  • Doignon J.-P., Ducamp, A., and Falmagne, J.-C. (1984), “On Realizable Biorders and the Biorder Dimension of a Relation”, Journal of Mathematical Psychology 28, 73–109.

    Article  Google Scholar 

  • Doignon, J.-P., and Falmagne, J.-C. (1994), “A polynomial time algorithm for unidimensional unfolding representations”, Journal of Algorithms 16, 218–233.

    Article  Google Scholar 

  • Doignon, J.-P., and Falmagne, J.-C. (1997), “Well-graded families of relations”, Discrete Mathematics 173, 35–44.

    Article  Google Scholar 

  • Doignon, J.-P. and Falmagne, J.-C. (1998), Knowledge Spaces. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Doignon, J.-P., and Regenwetter, M. (1997), “An approval-voting polytope for linear orders”, Journal of Mathematical Psychology 41, 171–188.

    Article  Google Scholar 

  • Doignon, J.-P., and Regenwetter, M. (in preparation), “On the combinatorial structure of the approval-voting polytope”, Draft.

    Google Scholar 

  • Ducamp, A., and Falmagne, J.-C. (1969), “Composite Measurement”, Journal of Mathematical Psychology 6, 359–390.

    Article  Google Scholar 

  • Dukhovny, A., Falmagne, J-C. and Ovchinnikov, S. (in preparation), “Media Theory”. Draft.

    Google Scholar 

  • Falmagne, J.-C. (1994), “The monks’ vote: A dialogue on unidimensional probabilistic geometry”. In Humphreys, P. (Ed.), Patrick Suppes, Mathematical Philosopher (Vol. 1, pp. 239–254 ). Kluwer, Amsterdam.

    Google Scholar 

  • Falmagne, J.-C. (1996), “A stochastic theory for the emergence and the evolution of preference structures”, Mathematical Social Sciences 31, 63–84.

    Article  Google Scholar 

  • Falmagne, J.-C. (1997), “Stochastic token theory”, Journal of Mathematical Psychology 41, 129–143.

    Article  Google Scholar 

  • Falmagne, J.-C., and Doignon, J.-P. (1997), “Stochastic evolution of rationality”, Theory and Decision 43, 107–138.

    Article  Google Scholar 

  • Falmagne, J.-C., and Regenwetter, M. (1996), “Random utility models for ap- proval voting”, Journal of Mathematical Psychology 40, 152–159.

    Article  Google Scholar 

  • Falmagne, J.-C., Regenwetter, M., and Grofman, B. (1997), “A stochastic model for the evolution of preferences”. In Marley, A. A. J. (Ed.), Choice, Decision and Measurement: Essays in Honor of R. Duncan Luce (pp. 113–131 ). Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  • Fiorini, S. (1997), “Le polytope des ordres partiels”. Mémoire de Licence, Université Libre de Bruxelles.

    Google Scholar 

  • Fishburn, P.C. (1970), “Intransitive indifference with unequal indifference intervals”, Journal of Mathematical Psychology 7, 144–149.

    Article  Google Scholar 

  • Fishburn, P. C. (1992), “Induced binary probabilities and the linear ordering polytope: A status report”, Mathematical Social Sciences 23, 67–80.

    Article  Google Scholar 

  • Fishburn, P.C., and Monjardet, B. (1992), “Norbert Wiener on the theory of measurement (1914, 1915, 1921)”, Journal of Mathematical Psychology 36, 165–184.

    Article  Google Scholar 

  • Grötschel, M., Jünger, M., and Reinelt, G. (1985), “Facets of the linear ordering polytope”, Mathematical Programming 33, 43–60.

    Article  Google Scholar 

  • Grünbaum, B. (1967), Convex Polytopes. Wiley, New York.

    Google Scholar 

  • Guttman, L. (1944), “A basis for scaling quantitative data”, American Sociological Review 9, 139–150.

    Article  Google Scholar 

  • Koppen, M. (1995), “Random utility representation of binary choice probabilities: Critical graphs yielding critical necessary conditions”, Journal of Mathematical Psychology 39, 21–39.

    Article  Google Scholar 

  • Luce, R. D. (1959), Individual Choice Behavior: A Theoretical Analysis. John Wiley, New York.

    Google Scholar 

  • Marley, A. A. J. (1993), “Aggregation theorems and the combination of probabilistic rank orders”. In Critchlow, D. E. and Fligner, M. A. and Verducci, J. S. (Eds.), Probability Models and Statistical Analyses for Ranking Data (pp. 216–240 ). Springer, New York.

    Chapter  Google Scholar 

  • Niederée, R., and Heyer, D. (1997), “Generalized random utility models and the representational theory of measurement: a conceptual link”. In Marley, A. A. J. (Ed.), Choice, Decision and Measurement: Essays in Honor of R. Duncan Luce (pp. 155–189 ). Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  • Pirlot, M. (1990), “Minimal representation of a semiorder”, Theory and Decision 28, 109–141.

    Article  Google Scholar 

  • Pirlot, M. (1991), “Synthetic description of a semiorder”, Discrete Applied Mathematics 31, 299–308.

    Article  Google Scholar 

  • Pirlot, M., and Vincke, Ph. (1997), Semiorders: Properties, Representations, Applications. Kluwer, Amsterdam.

    Google Scholar 

  • Regenwetter, M. (1996), “Random utility representations of finite m-ary relations”, Journal of Mathematical Psychology 40, 219–234.

    Article  Google Scholar 

  • Regenwetter, M. (1997), “Probabilistic preferences and topset voting”, Mathematical Social Sciences, 34, 91–105.

    Article  Google Scholar 

  • Regenwetter, M., and Doignon, J.-P. (1998), “The choice probabilities of the latent-scale model satisfy the size-independent model when n is small”, Journal of Mathematical Psychology 42, 102–106.

    Article  Google Scholar 

  • Regenwetter, M., Falmagne, J.-C., and Grofman, B. (1998), “A stochastic model of preference change and its application to 1992 presidential election panel data”. Psychological Review.

    Google Scholar 

  • Regenwetter, M., and Grofman, B. (1998a), “Choosing subsets: A size-independent random utility model and the quest for a social welfare ordering”, Social Choice and Welfare 15, 423–443.

    Google Scholar 

  • Regenwetter, M., and Grofman, B. (1998b), “Approval voting, Borda winners and Condorcet winners: evidence from seven elections”, Management Science 44, 520–533.

    Article  Google Scholar 

  • Regenwetter, M., Marley, A.A.J., and Joe, H. (1998), “Random utility threshold models of subset choice”, Australian Journal of Psychology 50, 175–185.

    Google Scholar 

  • Reinelt, G. (1985), The Linear Ordering Problem: Algorithms and Applications. Research and Exposition in Mathematics No. 8, Heldermann Verlag, Berlin.

    Google Scholar 

  • Riguet, J. (1951), “Les relations de Fermis”, Comptes Rendus des Séances de l’Académie des Sciences (Paris) 232, 1729–1730.

    Google Scholar 

  • Roberts, F. S. (1979), Measurement Theory, with applications to decision making, utility and the social sciences. Encyclopedia of Mathematics and its Applications, Gian-Carlo Rota (Ed.), Vol. 7: Mathematics and the Social Sciences. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Scott, D., and Suppes, P. (1958), “Foundational aspects of theories of measurement”, Journal of Symbolic Logic 23, 113–128.

    Article  Google Scholar 

  • Suck, R. (1992), “Geometric and combinatorial properties of the polytope of binary choice probabilities”, Mathematical Social Sciences 23, 81–102.

    Article  Google Scholar 

  • Suck, R. (1996), “The equivalence relation polytope and random classification and clustering”. In Diday, E., Lechevallier, Y., Opitz, O. (Eds.), Ordinal and Symbolic Data Analysis (pp. 351–358 ). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Suck, R. (in preparation), “Random utility representations based on semi orders, interval orders, and partial orders”. Manuscript at Dept. of Psychology, Universität Osnabrück.

    Google Scholar 

  • Trotter, W.T. (1992), Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  • Wahl, N. (1998), “Extension au cas infini de la théorie des familles bien graduées et des géométries convexes”. Mémoire de Licence, Université Libre de Bruxelles.

    Google Scholar 

  • Wiener, N. (1914), “A contribution to the theory of relative position”, Proceedings of the Cambridge Philosophical Society 17, 441–449.

    Google Scholar 

  • Ziegler, G. (1995), Lectures on Polytopes. Springer-Verlag, Heidelberg.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doignon, JP., Falmagne, JC., Regenwetter, M. (1999). Combinatoric and Geometric Aspects of Some Probabilistic Choice Models — A Review. In: Machina, M.J., Munier, B. (eds) Beliefs, Interactions and Preferences in Decision Making. Theory and Decision Library, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4592-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4592-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5096-3

  • Online ISBN: 978-1-4757-4592-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics