Skip to main content

Bone Anabolic Agents

  • Chapter
Atlas of Osteoporosis
  • 170 Accesses

Abstract

Bone remodeling is a complex but coupled process in which old bone is resorbed, followed by the formation of new bone. Ten percent of the human skeleton is remodeled per year. Osteoporosis is a disorder of bone remodeling characterized by uncoupling of resorption from formation. The net result is a loss of bone mass. Pharmacologic agents can restore bone mass by inhibiting bone resorption or stimulating new bone formation; antiresorptive agents suppress osteoclast-mediated dissolution more than bone formation, resulting in a secondary increase in bone mineral density (BMD). This alters the remodeling sequence and strengthens bone by reducing microperforations. In turn, osteoporotic fractures of the hip and spine are reduced. At the present time, virtually all drugs, except one, that are approved by the US Food and Drug Administration (FDA) for the treatment of established osteoporosis act to inhibit bone resorption. These include calcitonin, estrogen, raloxifene (Evista; Lilly, Indianapolis, IN), risedronate, and alendronate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riggs BL: Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990, 322:802–809.

    Article  PubMed  CAS  Google Scholar 

  2. Neer RM, Arnaud CD, Zanchetta JR, et al: Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001, 344:1434–1441.

    Article  PubMed  CAS  Google Scholar 

  3. Mitlak BH, Burdette-Miller R Schoenfeld D, Neer RM: Sequential effects of chronic human PTH treatment of estrogen deficiency osteopenia in the rat. J Bone Miner Res 1996, 11:430–439.

    Article  PubMed  CAS  Google Scholar 

  4. Finkenstedt G, Gasser RW, Hofle G, et al: Effects of GH replacement on bone metabolism and bone mineral density in adult onset of G H deficiency: results of a double-blind placebo controlled study with open follow-up. Eur J Endocrinol 1997, 136:282–289.

    Article  PubMed  CAS  Google Scholar 

  5. Boonen S, Rosen C, Bouillon R, et al: Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 2002, 87:1593–1599.

    Article  PubMed  CAS  Google Scholar 

  6. Rosen CJ, Donahue LR, Hunter SJ: IGFs and bone: the osteoporosis connection. Proc Soc Exp Biol Med 1994, 206:83–101.

    Article  PubMed  CAS  Google Scholar 

  7. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ: Genetic variability in adult bone density among inbred strains of mice. Bone 1996, 18:397–405.

    Article  PubMed  CAS  Google Scholar 

  8. Rosen CJ, Dimai HR Vereault D, et al.: Circulating and skeletal IGF-I concentrations in two inbred strains of mice with different bone densities. Bone 1997,21:217–223.

    Article  PubMed  CAS  Google Scholar 

  9. Dimai HR Linkhart TA, Linkhart SG, et al: Alkaline phosphatase levels and osteoprogenitor cell numbers suggest that bone formation may contribute to peak bone density differences between two inbred strains of mice. Bone 1998, 22:211–216.

    Article  PubMed  CAS  Google Scholar 

  10. Bachrach LK, Marcus R, Ott SM, et al: Bone mineral, histomorphometry, and body composition in adults with growth hormone receptor deficiency. J Bone Miner Res 1998, 13:415–421.

    Article  PubMed  CAS  Google Scholar 

  11. Kiel DP, Puhl J, Rosen CJ, et al: Lack of an association between IGF-I and body composition, muscle strength, physical performance, or self-reported mobility among older persons with functional limitations. J Am Geriatr 1998,46:822–828.

    CAS  Google Scholar 

  12. Harris TB, Kiel DP, Roubenoff R, et al: Association of IGF-I with body composition, weight history and past health behaviors in the very old. J Am Geriatr Soc 1997, 45:133–139.

    PubMed  CAS  Google Scholar 

  13. Kurland E, Rosen CJ, Cosman F, et al: Osteoporosis in men: abnormalities in the IGF-I axis. J Clin Endocrinol Metab 1997,82:2799–2805.

    Article  PubMed  CAS  Google Scholar 

  14. Rail LC, Rosen CJ, Dolnikowski G, Hartman WJ, Roubenoff R: Protein metabolism in rheumatoid arthritis and aging. Arthritis Rheum 1996, 39:1115–1124.

    Article  Google Scholar 

  15. Roubenoff R, Rail LC Veldhuis JD, et al: The relationship between GH kinetics and sarcopenia in postmenopausal women: the role of fat mass and leptin. J Clin Endocrinol Metab 1998,83:21–24.

    Article  Google Scholar 

  16. Maclean DB, Kiel DP, Rosen CJ: Low dose GH for frail elders stimulates bone turnover in a dose dependent manner. J Bone Miner Res l995(Suppl), 10:S48.

    Google Scholar 

  17. Holloway L, Kohlmeier L, Kent K, Marcus R: Skeletal effects of cyclic recombinant human growth hormone and salmon calcitonin in osteopenic postmenopausal women. J Clin Endocrinol Metab 1997,82:111–1117.

    Article  Google Scholar 

  18. Reeve J: PTH: a future role in the management of osteoporosis. J Bone Miner Res 1996, 11:440–445.

    Article  PubMed  CAS  Google Scholar 

  19. Sogaard CH, Mosekilde L,Thomsen SJ, et al: A comparison of the effects of two anabolic agents (NaF and PTH) on ash density and bone strength assessed in an osteopenic rat model. Bone 1997, 20:439–449.

    Article  PubMed  CAS  Google Scholar 

  20. Watson R Lazowski D, Han V, Hodsman AH: PTH restores bone mass and enhances osteoblast IGF-I gene expression in ovariectomized rats. Bone 1995, 16:357–365.

    Article  PubMed  CAS  Google Scholar 

  21. Lindsay R, Nieves J, Formica C, et al: Randomised controlled study of effect of parathyroid hormone on vertebral-bone mass and fracture incidence among postmenopausal women on oestrogen with osteoporosis. Lancet 1997,350:550–555.

    Article  PubMed  CAS  Google Scholar 

  22. Ammann R Rizzoli R, Caverzasio PS, Bonjour JP: Fluoride potentiates the osteogenic effects of IGF-I in aged ovariectomized rats. Bone 1998, 22:39–43.

    Article  PubMed  CAS  Google Scholar 

  23. Zerwekh JE, Padalino R Pak CYC:The effect of intermittent slow release NaF and continuous calcium citrate therapy on calciotropic hormones, biochemical markers of bone metabolism, and blood chemistry in postmenopausal osteoporosis. Calcif Tissue Int 1997, 61:272–278.

    Article  PubMed  CAS  Google Scholar 

  24. Meunier PJ, Sebert JL, Reginster JY, et al: Fluoride salts are no better at preventing new vertebral fractures than calcium-vitamin D in postmenopausal osteoporosis.The FAVO study. Osteoporosis Int 1998,8:4–12.

    Article  CAS  Google Scholar 

  25. Rittmaster RS, Bolognaise M, Ettinger MP, et al: Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 2000, 85:2129–2134.

    Article  PubMed  CAS  Google Scholar 

Recommended Reading

  • Bondy CA: Clinical uses of IGF-I. Ann Intern Med 1994, 120:593–601.

    Article  PubMed  CAS  Google Scholar 

  • Ebeling PR, Jones JD, O’ Fallon WM, et al.: Short-term effects of recombinant human IGF-I on bone turnover in normal women. Clin Endocrinol Metab 1993,77:1384–1391.

    Article  CAS  Google Scholar 

  • Ghiron LJ, Thomspon JL, Holloway L, et al: Effects of recombinant IGF-I and GH on bone turnover in elderly women. J Bone Miner Res 1995 10:1844–1854.

    Article  PubMed  CAS  Google Scholar 

  • Johansson AJ, Rosen CJ:The IGFs: potential anabolic agents for the skeleton. In Anabolic Treatments for Osteoporosis. Edited by Whitfield JF, Morley P. New York: CRC Press; 1998; 185–201.

    Google Scholar 

  • Nicholas V, Prewett A, Bettica R et al: Age-related decreases in IGF-I and TGF-beta in femoral cortical bone from both men and women: implications for bone loss with aging. J Clin Endocrinol Metab 1994 78:1011–1020.

    Article  Google Scholar 

  • Rosen CJ: Insulin-like growth factor-l and PTH: potential new therapeutic agents for the treatment of osteoporosis. Exp Opin Invest Drugs 1997 9:1193–1198.

    Article  Google Scholar 

  • Rubin J, Ackert-Bicknell CL, Zhu L, et at.: IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab 2002, 87:4273–4279.

    Article  PubMed  CAS  Google Scholar 

  • Tritos NA, Mantzoros CS: Recombinant human growth hormone: old and novel uses. Am J Med 1998, 105:44–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosen, C.J. (2003). Bone Anabolic Agents. In: Orwoll, E.S. (eds) Atlas of Osteoporosis. Current Medicine Group, London. https://doi.org/10.1007/978-1-4757-4561-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4561-0_17

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4757-4563-4

  • Online ISBN: 978-1-4757-4561-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics