Skip to main content

Neurohumoral, Renal, and Vascular Adjustments in Heart Failure

  • Chapter
Atlas of HEART FAILURE

Abstract

Congestive heart failure resulting from left ventricular dysfunction is accompanied by peripheral circulatory changes that influence cardiac function and contribute to the clinical manifestations of heart failure. Neurohumoral systems that modulate both vascular tone and the retention of salt and water are activated. These include the sympathetic nervous system, the reninangiotensin-aldosterone system, arginine vasopressin, and the natriuretic peptides. In addition, the peripheral circulation undergoes local changes in response to heart failure that are fundamental to the pathophysiology of this disease state. Such changes include an increased release of endothelin and prostaglandins, as well as a possible decrease in the activity of nitric oxide. In addition, there may be enhanced local production of angiotensin II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francis GS, Benedict C, Johnstone DE, et al Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. Circulation 1990, 82:1724–1729.

    Google Scholar 

  2. Vanhoutte PM, Luscher TF: Peripheral mechanisms in cardiovascular regulation: transmitters, receptors and the endothelium. In Handbook of Hypertension, vol 8. Edited by Tarazi RC, Zanchetti A. Amsterdam: Elsevier Science Publishers; 1986: 96–123.

    Google Scholar 

  3. Davis D, Baily R, Zelis R: Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 1988, 254 (suppl E): 760–766.

    Google Scholar 

  4. Leimbach WN Jr, Wallin BG, Victor RG, et al Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986, 73:913–919.

    Google Scholar 

  5. Paganelli WC, Creager MA, Dzau VJ: Cardiac regulation of renal function. In The International Textbook of Cardiology. Edited by Cheng TO. New York: Pergammon Press; 1986: 1010–1020.

    Google Scholar 

  6. Sopher SM, Smith ML, Eckberg DL, et al Autonomic pathophysiology in heart failure: carotid baroreceptor-cardiac reflexes. Am J Physiol 1990, 259:H689–H696.

    Google Scholar 

  7. Creager MA: Baroreceptor reflex function in congestive heart failure. Am J Cardiol 1992, 69:1OG–16G.

    Google Scholar 

  8. Ferguson DW, Abboud FM, Mark AL: Selective impairment of baroreflex mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 1984, 69: 451–460.

    Article  PubMed  CAS  Google Scholar 

  9. Kaye DM, Jennings GL, Dart AM, Esler MD: Differential effect of acute baroreceptor unloading on cardiac and systemic sympathetic tone in congestive heart failure. J Am Coll Cardiol 1998, 31: 583–587.

    Article  CAS  Google Scholar 

  10. Floras JS: Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 1993, 22: 72A - 84A.

    Article  PubMed  CAS  Google Scholar 

  11. Cohn JN, Levine B, Olivari MT, et al Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl JMed 1984, 311:819–823.

    Google Scholar 

  12. Cody RJ, Laragh JH: The role of the renin-angiotensin-aldosterone system in the pathophysiology of chronic heart failure. In Drug Treatment of Chronic Heart Failure. Edited by Cohn J. New York: Advanced Therapeutics Communications; Yorke Medical Publications; 1983: 35–51.

    Google Scholar 

  13. Hirsch AT, Pinto YM, Schunkert D, et al Potential role of the tissue renin-angiotensin system in the pathophysiology of congestive heart failure. Am J Cardiol 1990, 66:22D–32D.

    Google Scholar 

  14. Hirsch AT, Creager MA: The peripheral circulation in heart failure. In Congestive Heart Failure. Edited by Hosenpud JD, Greenberg BH. Heidelberg: Springer-Verlag; 1994: 145–160.

    Chapter  Google Scholar 

  15. Jorde UP, Vittorio T, Katz S, et al Elevated plasma aldosterone levels despite complete inhibition of the vascular angiotensinconverting enzyme in chronic heart failure. Circulation 2002, 106:1055–1057.

    Google Scholar 

  16. Tsutamoto T, Wada A, and Maeda K, et al Effect of spironolactone on plasma natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 2001, 37:1228–1233

    Google Scholar 

  17. Zannad F, Francois A, Dousset B, et al Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Circulation 2000, 102:2700–2706.

    Google Scholar 

  18. Dzau VJ: Short-and long-term determinants of cardiovascular function and therapy: contributions of circulating and tissue reninangiotensin systems. J Cardiovasc Pharmacol 1989, 14 (suppl 4): T1 - T5.

    Article  Google Scholar 

  19. Creager MA, Halperin AL, Bernard DB, et al Acute regional circulatory and renal hemodynamic effects of converting enzyme inhibition in patients with congestive heart failure. Circulation 1981, 64:483–489.

    Google Scholar 

  20. Packer M: Interaction of prostaglandins and angiotensin II in the modulation of renal function in congestive heart failure. Circulation 1988, 77: 164–173.

    Article  Google Scholar 

  21. Francis GS, Goldsmith SR, Levine BT, et al The neurohumoral axis in congestive heart failure. Ann Intern Med 1984, 101:370–377.

    Google Scholar 

  22. Creager MA, Faxon DP, Cutler SS, et al Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin angiotensin system and the sympathetic nervous system. J Am Coll Cardiol 1986, 7:758–765.

    Google Scholar 

  23. Martin PY, Abraham WT, Lieming X, et al Selective V2-receptor antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J Am Soc Nephrol 1999,10:2165–2170.

    Google Scholar 

  24. Gheorghiade M, Niazi I, Ouyang J, et al Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure. Circulation 2003, 107:2690–2696.

    Google Scholar 

  25. Wilkins MR, Redondo J, Brown LA: The natriuretic-peptide family. Lancet 1997, 349: 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  26. Cody RJ, Atlas SA, Laragh J H, et al Atrial natriuretic factor in normal subjects and heart failure patients. J Clin Invest 1986, 78:1362–1374.

    Google Scholar 

  27. Tsutamoto T, Wada A, Maeda K, et al Attenuation of compensation of endogenous cardiac natriuretic peptide system in chronic heart failure. Circulation 1997, 96:509–516.

    Google Scholar 

  28. Wada A, Tsutamoto T, Matsuda Y, et al Congestive heart failure: cardiorenal and neurohormonal effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase coupled receptors. Circulation 1994, 89:2232–2240.

    Google Scholar 

  29. Jougasaki M, Rodeheffer RJ, Redfield MM, et al Cardiac secretion of adrenomedullin in human heart failure. J Clin Invest 1996, 97:2370–2376.

    Google Scholar 

  30. Nagaya N, Satoh T, Nishikimi T, et al Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation 2000, 101:498 503.

    Google Scholar 

  31. Yanagisawa M, Kurihara S, Kimura S, et al A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332:411–415.

    Google Scholar 

  32. Masaki T, Yanagisawa M, Goto K, et al Cardiovascular significance of endothelin. In Cardiovascular Significance of Endothelium-Derived Vasoactive Factors Edited by Rubanyi GM. Mt. Kisco, NY: Futura Publishing; 1991:65–81.

    Google Scholar 

  33. Underwood RD, Chan DP, Burnett JC: Endothelin: an endothelium derived vasoconstrictor peptide and its role in congestive heart failure. Heart Failure 1991, 7: 50 58.

    Google Scholar 

  34. Luchner A, Jougasaki M, Friedrich E, et al Activation of cardiorenal and pulmonary tissue endothelin-1 in experimental heart failure. Am J Physiol Regulatory Integrative Comp Physiol 2000, 279:R974–R979.

    Google Scholar 

  35. Cody RJ, Haas GJ, Binkley PF, et al Plasma endothelin correlates with the extent of the pulmonary hypertension in patients with chronic congestive heart failure. Circulation 1992, 85:504–509.

    Google Scholar 

  36. Rodeheffer RJ, Lerman A, Heublein DM, et al Increased plasma concentrations of endothelin in congestive heart failure in humans. Mayo Clin Proc 1992, 67:719–724.

    Google Scholar 

  37. Pacher R, Stanek B, Hillsmann M, et al Prognostic impact of big endothelin-1 plasma concentrations compared with invasive hemodynamic evaluation in severe heart failure. JAnr Coll Cordial 1996, 27:633–641.

    Google Scholar 

  38. Treasure CB, Vita JA, Cox DA, et al Endothelium dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 1990, 81:772–779.

    Google Scholar 

  39. Kubo SH, Rector TS, Bank AJ, et al Endothelium dependent vasodilation is attenuated in patients with heart failure. Circulation 1991, 84:1589–1596.

    Google Scholar 

  40. Kubo SH, Bank AJ: Endothelium dependent vasodilation in heart failure. Heart Failure 1992, 8: 142–153.

    Google Scholar 

  41. Hornig B, Maier V, Drexler H: Physical training improves endothelial function in patients with chronic heart failure. Circulation 1996, 93: 210–214.

    Article  PubMed  CAS  Google Scholar 

  42. Hornig B, Arakawa N, Kohler C, et al Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998, 97:363–368.

    Google Scholar 

  43. Katz SD, Balidemaj K, Homma S, et al Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol 2000, 36:845–851.

    Google Scholar 

  44. Zelis R, Nellis S, Longhurst J, et al Abnormalities in the regional circulations accompanying congestive heart failure. Prag Cardiovasc Dis 1975, 18:181–199.

    Google Scholar 

  45. Hirsch AT, Dzau VJ, Creager MA: Baroreceptor function in congestive heart failure: effect on neurohumoral activation and regional vascular resistance. Circulation 1987, 75 (suppl IV): 36–48.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nohria, A., Cusco, J.A., Creager, M.A. (2005). Neurohumoral, Renal, and Vascular Adjustments in Heart Failure. In: Colucci, W.S. (eds) Atlas of HEART FAILURE. Current Medicine Group, London. https://doi.org/10.1007/978-1-4757-4558-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4558-0_6

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4757-4560-3

  • Online ISBN: 978-1-4757-4558-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics