Skip to main content

Thermodynamic Properties of Rex3, AuCu3-Type, Intermetallic Compounds

  • Chapter
Book cover Analytical Calorimetry

Abstract

The crystallographic data of many rare earths (RE) intermetallic compounds are well established but in most cases their thermodynamic properties are not known. Accurate thermodynamic data are valuable not only as a quantitative measure of the relative stability of alloys but as basic informations for testing theories of the metallic state. We have therefore developed a method suitable for the direct determination of the heats of formation and heats of fusion based on Using a conventional differential thermal analysis apparatus. If the heat of formation of a compound can be measured by a reaction involving direct combination of the elements, the results are likely to be more accurate than if an indirect method is employed, such as vapour pressure or electromotive force measurements or solution calorimetry. Another advantage of the direct method compared with other traditional techniques is the speed with which the measurements can be carried out:a single determination taking no more than one or two hours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Faktor and R. Hanks, Trans. Faraday Soc.63(1967)1122.

    Article  CAS  Google Scholar 

  2. M.M. Faktor and R. Hanks, Trans.Faraday Soc.63(1967)1130.

    Article  Google Scholar 

  3. O. Kubaschewski, E.L. Evans and C.B. Aleock. Metallurgical Thermochemistry, Pergamon Press, London 1967.

    Google Scholar 

  4. R. Hultgren, R.L. Orr, P.D. Anderson and K.K. Kelly, Selected values of thermodynamic properties of metals and alloys, Wiley, New York, 1963.

    Google Scholar 

  5. P. Chiotti, G.J. Gartner, E.R. Stevens and Y. Saito, J.Chem. Eng.Data, 11(1966)571.

    Article  CAS  Google Scholar 

  6. L. Malaspina, R. Gigli and V. Piacente, Gazz.Chim.Ital., 101(1971)197.

    CAS  Google Scholar 

  7. P.B. Garn, Thermoanalytical Methods of Investigation, Academic Press, New York, 1965.

    Google Scholar 

  8. C.J. Smithells, Metal Reference Book, Butterworths, London, 1967.

    Google Scholar 

  9. K.A. Gschneidner, Solid State Physics, Vol.16, Academic Press, New York, 1964.

    Google Scholar 

  10. Metals Handbook, 8th ed., Vol.1, A.S.M.,1964.

    Google Scholar 

  11. J. E. Guadagno, M.J. Pool., S.S. Shen and P. J. Spencer, Trans. Met. Soc.AIME, 242(1968)2013.

    Google Scholar 

  12. P.P. Otopkov, I. Gerasimov and A.M. Evseev, Dokl.Akad. Nauk.SSSR, 139(1961)616.

    CAS  Google Scholar 

  13. V.A. Degtyar’, A.P. Bayanov, L.A. Vnuchkova and T.V. Serebrennikov, Russ.J.Phys.Chem., 45(1971)1032.

    Google Scholar 

  14. A. Percheron, J.C. Mathieu and P. Trombe, C.H.Acad.Sci. 266 C (1968)848.

    CAS  Google Scholar 

  15. A. Bacha, C. Chatillon-Colinet, A. Percheron, J.C. Mathieu and J.C. Achard, C.R.Acad.Sci. 276 C (1973)995.

    CAS  Google Scholar 

  16. A. Bacha, C. Chatillon-Colinet, A. Percheron and J.C. Mathieu, C.R.Acad.Sci. 274 C (1972)680.

    CAS  Google Scholar 

  17. C. Chatillon-Colinet, A. Percheron, J.C. Mathieu and J. C. Achard, C.R.Acad.Sci. 270 C (1970)473.

    CAS  Google Scholar 

  18. K.A. Gschneidner, J. Less-Common Metals, 17(1969)13.

    Article  CAS  Google Scholar 

  19. A. Iandelli, private communication.

    Google Scholar 

  20. E. Veleckis, Johnson and H. Feder, USAEC Report n° ANL-7175,(1966)154.

    Google Scholar 

  21. J.E. Ogren, N.J. Magnani and J.P. Smith, Trans. TMS-AIME, 239(1967)766.

    CAS  Google Scholar 

  22. P.M. Eobinson and M.B. Bever, in J.H. Westbrook(ed). Intermetallic Compounds, Wiley, New York, 1967, p.38.

    Google Scholar 

  23. K.A. Grschneidner, J. Less—Common Metals, 17(1969)1.

    Article  Google Scholar 

  24. A. Palenzona and S. Cirafici, Thermochim.Acta, 6(l973)455.

    Article  Google Scholar 

  25. A. Palenzona, Thermochim.Acta, 5(1973)473.

    Article  CAS  Google Scholar 

  26. A.E. Miedema, J. Less-Common Metals, 32(1973)117.

    Article  CAS  Google Scholar 

  27. L.H. Ahrens, Geochim.et Cosmochim.Acta, 2(1952)155.

    Article  CAS  Google Scholar 

  28. J.E. Cooper, C. Eizzuto and G.L. Olcese, J.Phys.(Paris), Collog., C1, suppl.n°2–3, Tome 32, Pevrier-Mars 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palenzona, A., Cirafici, S. (1974). Thermodynamic Properties of Rex3, AuCu3-Type, Intermetallic Compounds. In: Porter, R.S., Johnson, J.F. (eds) Analytical Calorimetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4509-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4509-2_57

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4511-5

  • Online ISBN: 978-1-4757-4509-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics