Skip to main content

Cyclic Nucleotides and Changes in Protein Kinase Activity Ratio in the Ischemic and Nonischemic Myocardium

  • Chapter
Book cover Advances in Myocardiology
  • 58 Accesses

Abstract

Following coronary artery ligation (CAL), levels of cAMP and the activity ratio of cAMP-dependent protein kinase, of Phosphorylase kinase, and of Phosphorylase are significantly elevated in both ischemic and nonischemic areas of the canine left ventricle. The aerobic level of cAMP was found to be 0.4 to 0.6 pmol/mg myocardium only after a precooled clamp or a cryobiopsy device was employed to guarantee tissue freezing in situ. Maximal changes in response to ischemia are observed within 2 min in both parts of the heart. Twenty minutes after the onset of ischemia, different responses have been found in the nonischemic and ischemic tissue. Whereas the levels of cAMP and the activity ratio of protein kinase, of Phosphorylase kinase, and of Phosphorylase returned to aerobic values in the nonischemic area, these parameters remained elevated in the ischemic area. The changes in the levels of myocardial cAMP and in the cAMP-dependent protein kinase activity ratio following CAL could be prevented by propranolol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, P. 1973. The subunit structure of rabbit skeletal muscle Phosphorylase kinase and the molecular basis of its activation reactions. Eur. J. Biochem. 34:1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Corr, P. B., Witkowski, F. X., and Sobel, B. E. 1978. Mechanism contributing to malignant dysrhythmias induced by ischemia in the cat. J. Clin. Invest. 61:109–119.

    Article  PubMed  CAS  Google Scholar 

  3. Dobson, J. G. 1978. Protein kinase regulation of cardiac Phosphorylase activity and contractility. Am. J. Physiol. 234:H638-H648.

    PubMed  CAS  Google Scholar 

  4. Dobson, J. G., and Mayer, S. E. 1973. Mechanisms of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ. Res. 33:412–420.

    Article  PubMed  CAS  Google Scholar 

  5. Gilman, A. 1970. A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl. Acad. Sci. U.S.A. 67:305–312.

    Article  PubMed  CAS  Google Scholar 

  6. Harper, J. R. and Brooker, G. 1975. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2’0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1:207–218.

    PubMed  CAS  Google Scholar 

  7. Illingworth, B., and Cori, G. T. 1953. Crystalline muscle Phosphorylase. Biochem. Prep. 3:1–9.

    CAS  Google Scholar 

  8. Keely, S. L., and Corbin, J. D. 1977. Involvement of cAMP-dependent protein kinase in the regulation of heart contractile force. Am. J. Physiol. 2:H269-H275.

    Google Scholar 

  9. Krause, E.-G., Bartel, S., Reich, J.-G., and Winkler, J. 1981. On the activation of protein kinase by cAMP in the myocardium in vivo. Biochem. S oc. Trans. 9:24 IP.

    Google Scholar 

  10. Krause, E.-G., and Hosenfelder, W. 1981. Probennehmer zur tiefgekühlten Gewebsentnahme aus biologischen Material. Patentschrift 149464, Amt für Erfindungs- und Patentwesen der DDR, Berlin.

    Google Scholar 

  11. Krause, E.-G. and Wollenberger, A. 1967. Aktivierung der Phosphorylase-6-kinase im akut ischämischen Myokard. Acta Biol. Med. Germ. 19:381–386.

    PubMed  CAS  Google Scholar 

  12. Krause, E.-G., and Wollenberger, A. 1980. Cyclic nucleotides in heart in acute myocardial ischemia and hypoxia. Adv. Cyclic Nucleotide Res. 12:51–61.

    Google Scholar 

  13. Krause, E.-G., Ziegelhöffer, A., Fedelesova, M., Styk, J., Kostolansky, S., Gabauer, I., Blasig, I., and Wollenberger, A. 1978. Myocardial cyclic nucleotide levels following coronary artery ligation. Adv. Cardiol. 25:119–129.

    PubMed  CAS  Google Scholar 

  14. Krebs, E. G., Graves, J. G., and Fischer, E. H. 1959. Factors affecting the activity of muscle Phosphorylase b kinase. J. Biol. Chem. 234:2867–2873.

    PubMed  CAS  Google Scholar 

  15. Malliani, A., Schwartz, P. J., and Zanchetti, A. 1969. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217:703–709.

    PubMed  CAS  Google Scholar 

  16. Matsushita, S., Shinawaga, T., Sukai, M., Moroki, N., Karamato, K., and Murakami, M. 1978. Comparison of adenosine 3′:5′ monophosphate dependent protein kinase from various cardiac muscle. In: VIII. World Congress on Cardiology, Tokyo, p. 560.

    Google Scholar 

  17. Nimmo, M. G., and Cohen, P. 1977. Hormonal control of protein phosphorylation. Adv. Cyclic Nucleotide Res. 8:146–266.

    Google Scholar 

  18. Opie, L. H., Nathan, D., and Lubbe, W. F. 1979. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am. J. Cardiol. 43:131–148.

    Article  PubMed  CAS  Google Scholar 

  19. Shahab, L., Haase, M., Schiller, U., and Wollenberger, A. 1969. Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol. Med. Germ. 22:135–143.

    PubMed  CAS  Google Scholar 

  20. Tsien, R. W. 1977. Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8:364–420.

    Google Scholar 

  21. Podzuweit, T., Dalby, A. J., Cherry, G. W., and Opie, L. H. 1978. Cyclic AMP levels in ischemic and nonischemic myocardium following coronary artery ligation: Relation to ventricular fibrillation. J. Mol. Cell. Cardiol. 10:81–94.

    Article  PubMed  CAS  Google Scholar 

  22. Pool, P. E., Norris, G. F., Levis, R. M., and Covell, J. W. 1968. A biopsy-drill permitting rapid freezing. J. Appl. Physiol. 24:832–833.

    PubMed  CAS  Google Scholar 

  23. Wollenberger, A. 1975. The role of cyclic AMP in the adrenergic control of myocardium. In: W. G. Nayler (ed.), Contraction and Relaxation of the Heart, pp. 113–190. Academic Press, London.

    Google Scholar 

  24. Wollenberger, A., Krause, E.-G., and Heier, G. 1969. Stimulation of 3’,5’-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem. Biophys. Res. Commun. 36:664–670.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krause, EG., Bartel, S., Karczewski, P., Lindenau, KF. (1983). Cyclic Nucleotides and Changes in Protein Kinase Activity Ratio in the Ischemic and Nonischemic Myocardium. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics