Skip to main content

Abstract

Toxic metabolites produced by pathogenic fungi and bacteria contribute to symptoms development in infested plants or animals and may cause serious diseases (Yoder, 1980; Schäfer, 1994). Fungal phytotoxins are roughly divided into two groups: (a) host-selective toxins are produced only by a few fungal species (e.g. Alternaria, Cochliobolus) and are toxic only to the hosts of these pathogens; they show little or no toxicity to nonsusceptible plants, and (b) non-selective toxins are produced by a number of fungi and bacteria and cause damage not only on the host plant but also on other plant species that are not normally attacked by the pathogen in nature including animal and man if the invaded plants are used as foodstuffs. The mechanisms of toxicity i.e. the modes of action of some non-selective phytotoxins are already known, some mechanisms are still tentative. Besides this, these toxins may either be toxic per se or establish their toxicity via activation of certain host cell-types such as leukocytes. In plants the disease symptoms caused by non-selective phytotoxins are often very similar, mostly visible as chlorotic lesions and/or wilt and often very similar to herbicide effects. At the subcellular level destruction of membranes in toxin treated plants is observed. Mostly a breakdown of lipids together with pigment degradation occurs as symptoms of lipid peroxidation (Elstner and Osswald, 1980; Elstner, 1982) after the oxygen metabolism of the plant was impaired. As a consequence of this reactive oxygen species (ROS) like superoxide (O 2 ), hydrogen peroxide (H2O2) or hydroxyl radicals (·OH) may be formed (Elstner and Osswald, 1994; Heiser et al., 1998c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achor, D. S., Nemec, S., and Baker, R.A., 1993, Effects of Fusarium solani naphthazarin toxins on the cytology and ultrastructure of rough lemon seedlings, Mycopathologia 123: 117–126.

    Article  CAS  Google Scholar 

  • Agrios, G.N., 1997, Plant Pathology, Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto.

    Google Scholar 

  • Akuzawa, S., Yamaguchi, H., Masuda, T., and Ueno, Y., 1992, Radical-mediated modification ofdeoxyguanine and deoxyribose by luteoskyrin and related anthraquinones, Mutat. Res. 266: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, A., 1996, Naphthochinoide Verbindungen als Redoxmediatoren in phytopathologischen Prozessen. Biochemischer Wirkmechanismus des Toxins Dhhydrofusarubin von Fusarium solani, Ph. D. Thesis, Technical University of Munich, Germany.

    Google Scholar 

  • Albrecht, A., Heiser, I., Baker, R., Nemec, S., Elstner, E.F., and Oßwald, W., 1998, Effects of the Fusarium solani toxin ihydrofusarubin on tobacco leaves and spinach chloroplasts, J. Plant Physiol. 153: 462–468.

    Article  CAS  Google Scholar 

  • Anusevicius, Z.J., and Cènas, N.K., 1993, Dihydrolipoamide-mediated redox cycling of quinones, Archives of Biochemistry and Biophysics 302: 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Ardus, J.A., Gillman, I.G., and Manderville, R.A., 1998, On the role of copper and iron in DANN cleavage by ochratoxin A. Structure-activity relationships in metal binding and copper-mediated DANN cleavage, Can. J Chem. 76: 907–918.

    Article  CAS  Google Scholar 

  • Asada, K., 1992, Production and scavenging of active oxygen in chloroplasts, in: Molecular Biology of Free Radical Scavenging Systems, Cold Spring Harbor Laboratory Press, USA.

    Google Scholar 

  • Assante, G., Locci, R., Camarda, L., Merlini, L., and Nasini, G., 1977, Screening of the genus Cercospora for secondary metabolites, Phytochemistry 16: 243–246.

    Article  CAS  Google Scholar 

  • Baywater, J., 1959, Infection of peas by Fusarium solani - r. martii forma 2 and the spread of the pathogen, Trans. Br. Mycol. Soc. 42: 201–212.

    Article  Google Scholar 

  • Blein, J.P., Milat, M.L., and Ricci, P., 1991, Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, Plant Physiol. 95: 486–491.

    Article  PubMed  CAS  Google Scholar 

  • Bóger, P., and Sandmann, G., 1990, Modem herbicides affecting typical plant processes,. in: Chemistry of Plant Protection, W.S. Bowers, W. Ebing, D. Martin and R. Wegler, eds., Springer Publ. 6, Berlin, Heidelberg.

    Google Scholar 

  • Bourque, S., Ponchet, M., Binet, M.N., Ricci, P., Pugin, A., and Lebrun-Garcia, A., 1998, Comparison of binding properties and early biological effects of elicitins in tobacco cells, Plant Physiol. 118: 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Britigan, B.E., Rasmussen, G.T., and Cox, C.D., 1997, Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa sederophore pyochelin, Infect. Immun. 65: 1071–1076.

    PubMed  CAS  Google Scholar 

  • Buffinton, G.D., Öllinger, K., Brunmark, A., and Cadenas, E., 1989, DT-diaphorase-catalyzed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates, Biochem. J. 257: 561–568.

    PubMed  CAS  Google Scholar 

  • Cantin-Esnault, D., Richard, J.M., and Jeunet A., 1998, Generation of oxygen radicals from iron complex of orellanine, a mushroom nephrotoxin; preliminary ESR and spin trapping studies, Free Radic. Res. 28: 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Cavallini, L., Bindoli, A., Macri, F., and Vianello, A., 1979, Lipid peroxidation induced by cercosporin as a possible determinant of its toxicity, Chem.-Biol. Interactions 28: 139–146.

    Article  CAS  Google Scholar 

  • Csinos, A., and Hendrix, J., 1978, Toxin produced by Phytophtora cryptogea active on excised tobacco leaves, Can. J. Bot. 55: 1156–1162.

    Google Scholar 

  • Crabtree, J.E., 1996, Gastic mucosal inflammatory responses to Helicobacter pylori, Aliment.Pharmcol.Ther. 10 (Suppl.l): 29–37.

    Google Scholar 

  • Chaterjee, P., 1958, The bean rot complex in Idaho, Phytopathology 48: 197–200.

    Google Scholar 

  • Daub, M.E., 1982a, Cercosporin, a photosensitizing toxin from Cercospora species, Phytopathology 72: 370–374.

    Article  CAS  Google Scholar 

  • Daub, M.E., 1982b, Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin, Plant Physiol. 69: 1361–1364.

    Article  PubMed  CAS  Google Scholar 

  • Daub, M.E., and Briggs, S.P., 1983, Changes in tobacco cell membrane composition and structure caused by cercosporin, Plant Physiol. 71: 763–766.

    Article  PubMed  CAS  Google Scholar 

  • Daub, M.E., and Hangarter, R.P., 1983, Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin, Plant Physiol. 73: 855–857.

    Article  PubMed  CAS  Google Scholar 

  • Daub, M.E., Leisman, G.B., Clark, R.A., and Bowden, E.F., 1992, Reductive detoxification as a mechanism of fungal resistance to singlet oxygen-generating photosensitizers, Proc. Natl. Acad. Sci. USA 89: 9588–9592.

    Article  PubMed  CAS  Google Scholar 

  • Ding, W.X., Shen, H.M., Zhu, H.G., and Ong, C.N., 1998, Studies on oxidative damage induced by cyanobacteria extract in primary cultured rat hepatocytes, Env iron. Res. 78: 12–18.

    CAS  Google Scholar 

  • Dimheimer, G., 2000, A review of recent advances in the genotoxicity of carcinogenic mycotoxins, in: Carcinogenic and Anticarcinogenic Factors in Food (DFG-Symposium), G. Eisenbrand et al., eds., Wiley-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Durbin, R.D., 1981, Toxins in Plant Disease, Academic Press, New York, London, San Francisco.

    Google Scholar 

  • Durst, F., Benneviste, L., Salatin, J.-P., and Werck, D., 1994, Function and diversity of plant cytochrome P450, in: Cytochrome P450 8’ h International Conference, M.C. Lechner, ed., John Libbey Eurotext, Paris.

    Google Scholar 

  • Elstner, E.F., 1982, Oxygen activation and oxygen toxicity, Annu. Rev. Plant Physiol 33: 73–96.

    Article  CAS  Google Scholar 

  • Elstner, E.F., and Oßwald, W.F., 1980, Chlorophyll photobleaching and ethane production in dichlorophenyldimethylurea(DCMU)- or paraquat-treated Euglena gracilis cells, Z. Naturforsch. 35c: 129–135.

    CAS  Google Scholar 

  • Elstner, E. F., and Oßwald, W.F., 1994, Mechanism of oxygen activation in plant stress, Proc. Roy. Soc. Edinburgh 102b: 131–154.

    Google Scholar 

  • Elstner, E.F., Saran, M., Bors, W., and Lengfelder, E., 1978, Oxygen activation in isolated chloroplasts: Mechanism of ferredoxin-dependent ethylene formation from methionine, Eur. J. Biochem. 89: 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Elstner, E.F., Oßwald, W., and Youngman, R.J., 1985, Basic mechanisms of pigment bleaching and loss of structural resistance in spruce (Picea ables) needles: advances in phytomedical diagnostics, Experientia 41: 591–597.

    Article  CAS  Google Scholar 

  • Forrester, L.M., Neal, G.E., Judah, D.J., Glancey, M.J., and Wolf, C.R., 1990, Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver, Proc. Natl. Acad. Sci. USA 87: 8306–8310.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., and Halliwell, B., 1976, The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta 133: 21–25.

    Article  Google Scholar 

  • Franich, R.A., Carson, M.J., and Carson, S.D., 1986, Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of Pinus radiata families to Dothistroma pipi, Physiol. Mol. Plant Pathol. 28: 267–286.

    Article  CAS  Google Scholar 

  • Gillman, LG., Day, C.S., and Manderville, R.A., 1998a, Stepwise formation of a nonsymmetric dinuclear copper complex ofochratoxin A, Inorg.Chem. 37: 6385–6388.

    Article  CAS  Google Scholar 

  • Gillman, LG., Yezek, J.M., and Manderville, R.A., 19986, Ochratoxin A acts as a photoactivatable DANN cleaving agent, Chem. Comm. 13: 647–648.

    Google Scholar 

  • Gillman,I.G., Clark,T.N., and Manderville R.A., 1999, Oxidation ofochratoxin A by a Fe-porphyrin system: model for enzymatic activation and DNA cleavage, Chem. Res. Toxicol. 12: 1066–1076.

    Article  Google Scholar 

  • Graham, J. H., Timmer, L.W., and Young R.H., 1983, Necrosis of major roots in relation to citrus blight, Plant Disease 67: 1273–1276.

    Article  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1986, Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts, Arch. Biochem. Biophys. 246: 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, P., 1999, Lethal toxin actions and their consequences, J.Appl. Microbiol. 87: 285–287.

    Article  PubMed  CAS  Google Scholar 

  • Härtel, H., Haseloff, R.F., Ebert, B., and Rank, B., 1992, Free radical formation in chloroplasts–methyl viologen action, J. Photochem. Photobiol. B: Biol. 12: 375–387.

    Article  Google Scholar 

  • Hartman, P.E., Suzuki, C.K., and Stack, M.E., 1989, Photodynamic production of superoxide in vitro by altertoxins in the presence of reducing agents, Appl. and Environ. Microbiology 55: 7–10.

    CAS  Google Scholar 

  • Hasinoff, B.B., Rahimtula, A.D., and Omar, R.F., 1990, NADPH-Cytochrome P-450 reductase promoted hydroxyl radical production by the iron(III)-ochratoxin A complex, Biochim.Biophys.Acta 1036: 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Heiser, I., Muhr, A., and Elstner, E.F., 1998a, Production of OH-radical-type oxidant by lucigenin, Z. Naturforsch. 53c: 9–14.

    CAS  Google Scholar 

  • Heiser, I., Oßwald, W., Baker, R., Nemec, S., and Elstner, E.F., 1998b, Activation of Fusarium naphthazarin toxins and other p-quinones by reduced thioctic acid, J. Plant Physiol. 153: 276–280.

    Article  CAS  Google Scholar 

  • Heiser, 1., Oßwald, W., and Elstner, E.F., 1998c, The formation of reactive oxygen species by fungal and bacterial phytotoxins, Plant Physiol. Biochem. 36: 703–713.

    Article  Google Scholar 

  • Heiser, I., Fromm, J., Giefing, M., Koehl, J., Jung, T., and Oßwald, W., 1999, Investigations on the action of Phytophthora quercina, P. citricola and P. gonapodyides toxins on tobacco plants, Plant Physiol. Biochem. 37: 73–81.

    Article  CAS  Google Scholar 

  • H ippeli, S., and Elstner, E.F., 1999, Transition metal ion-catalyzed oxygen activation during pathogenic processes, FEBS Letters 443: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Hlavica, P., 1984, On the function of cytochrome P-450-dependent oxygenase system, Arch. Biochem. Biophys. 228: 600–608.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, R.A.J., and Raison, J.K., 1991, Lipid-peroxidation and superoxide-dismutase activity in relation to photoinhibition induced by chilling in moderate light, Planta 185: 215–219.

    Article  CAS  Google Scholar 

  • Jarabak, R., and Jarabak, J., 1995, Effect of ascorbate on the DT-diaphorase mediated redox cycling of 2-methyl-1, 4-naphthoquinone, Arch. Biochem. Biophys. 318: 418–423.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, T., Singh, S., Dhawan, V., and Ganguly, N.K., 1998, Shigelladysenteriae type 1 toxin induced lipid peroxidation in enterocytes isolated from rabbit ileum, Mol.Chem.Biochem. 178: 169–179.

    CAS  Google Scholar 

  • Kern, H., 1978, The naphthazarins of Fusarium, Annu. Phytopathol. 10: 327–345.

    CAS  Google Scholar 

  • Kindas-Mugge, I., Pohl, W.R., Zavadova, E., Kohn, H.D., Fitzal, S., Kummer, F., and Micksche, M., 1996, Alveolar macrophages on patients with adult respiratory distress syndrome express high levels of heat shock protein 72 mRNA, Shock 5: 184–189.

    Article  PubMed  CAS  Google Scholar 

  • King, A.J., Sudartam, S., Cendoroglo, M., Acheson, D.W., and Keusch, G.T., 1999, Shigatoxin induces superoxide production in polymorphonuclear cells with subsequent impairment of phagocytosis and responsiveness to phorbol esters, J. Infec. Dis. 179: 503–507.

    Article  CAS  Google Scholar 

  • Kombrink, J., and Somssich, I.E., 1995, Defense responses of plants to pathogens, Advances in Botanical Research 21: 34.

    Article  Google Scholar 

  • Le Berre, J., Panabières, F., Ponchet, M., Denoroy, L., Bonnet, P., Marais, A., and Ricci, P., 1994, Occurrence of multiple forms of elicitins in Phytophthora cryptogea, Plant Physiol. Biochem. 32: 251–258.

    Google Scholar 

  • Lüthje, S., Döring, O., Heuer, S., Lüthen, H., and Böttger, M., 1997, Oxidoreductases in plant plasma membranes, Biochim. Biophys. Acta 1331: 81–102.

    Google Scholar 

  • Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M., 1999, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model, Cell 96: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Marsho, T.V., Behrens, P.W., and Radmer, R.J., 1979, Photosynthetic oxygen reduction in isolated intact chloroplasts and cells from spinach, Plant Physiol. 64: 656–659.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, T., Ito, J., Akuzawa, S., Ishii, K., Takagi, H., and Ueno, Y., 1992, Hepatic accumulation and hepatotoxicity of luteoskyrin in mice, Toxicol. Lett. 61: 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Matsunage, T., Nakajima, T., Sonoda, M., Kawai, S., Kobayashi, J., Inoue, I., Satomi, A., Katayama, S., Hara, A., Hokari, S., Honda, T., and Komoda, T., 1999, Reactive oxygen species as a risk factor in verotoxin-l-exposed rats, Biochem. Biophys. Res. Comm. 260: 813–819.

    Article  Google Scholar 

  • Mavandad, M., Edwards, R., Liang, X., Lamb, C.J., and Dixon, R.A., 1990, Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family, Plant Physiol. 94: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Medentsev, A.G., Baskunov, B.P., and Akimenko, V.K., 1988, Formation of naphthoquinone pigments by the fungus Fusarium decemcellulare and their influence on the oxidative metabolism of the producer, Biokhimiya 53: 353–363.

    Google Scholar 

  • Milat, M., Ducruet, J., Ricci, P., Marty, F., and Blein, J., 1991, Physiological and structural changes in tobacco leaves treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, Phytopathology 81: 1364 1368.

    Google Scholar 

  • Mikes, V., Milat, M., Ponchet, M., Ricci, P., and Blein, J., 1997, The fungal elicitor cryptogein is a sterol carrier protein, FEBS Letters 416: 190–192.

    Article  PubMed  CAS  Google Scholar 

  • Muller, G., Kieslstein, P., Rosner, H., Berndt, A., Heller, M., and Kohler, H., 1999, Studies of the influence of ochratoxin A on immune defence reactions in weaners, Mycoses 42: 495–505.

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W., 1978, Genetic difference in microsomal electron transport: the Ah-locus, Methods Enzymol. 52: 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Nemec, S., Baker, R.A., and Tatum, J.H., 1988, Toxicity of dihydrofusarubin and isomarticin from Fusarium solani to citrus seedlings, Soil Biol. Biochem. 20: 493–499.

    Article  CAS  Google Scholar 

  • Nemec, S., Jabaji-Hare, S., and Charest, P.M., 1991, ELISA and immunocytochemical detection of Fusarium solaniproduced naphthazarin toxins in citrus trees in Florida, Phytopathology 81: 1497–1503.

    Article  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Jabs, T., Sachs, W.R., Hahlbrock, R., and Scheel, D., 1994, High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses, Cell 78: 449–460.

    Article  PubMed  Google Scholar 

  • Omar, R.F., Hasinoff, B.B., Mejilla, F., and Rahimtula, A.D., 1990, Mechanism of ochratoxin A stimulated lipid peroxidation, Biochem. Pharmacol. 40: 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  • Omar, R.F., Gelboin, H.V., and Rahimtula, A.D., 1996, Effect of cytochrom P450 induction on the metabolism and toxicity of ochratoxin A., Biochem. Pharmacol. 51: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Oßwald, W., 1995, Die Wirt-Parasit-Beziehungen — Bakterien und Pilze als Parasiten, in: Schadwirkungen auf Pflanzen, B. Hock and E.F. Elstner, eds., Spektrum akademischer Verlag, Heidelberg, Berlin.

    Google Scholar 

  • Oßwald, W.F., and Elstner, E.F., 1986, Mechanismen der pathologischen Pigmentbleichung bei Pflanzen, Ber. Deutsch. Bot. Ges. 99: 341–365.

    Google Scholar 

  • Oubrahim, H., Richard, J.M., and Cantin-Esnauld, D., 1998, Peroxidase-mediated oxidation, a possible pathway for activation of the fungal nephrotoxin orellanine and related compounds. ESR and spin trapping studies, Free Radic. Res. 28: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Panabières, F., Ponchet, M., Allasia, V., Cardin, L., and Ricci, P., 1997, Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical from Phytophthora spp., Mycol. Res. 101: 1459–1468.

    Article  Google Scholar 

  • Parisot, D., Devys, M., and Barbier, M., 1990, Naphthoquinone pigments related to fusarium from the fungus Fusarium solani (Mart.) Sacc. Microbios 64: 31–47.

    PubMed  CAS  Google Scholar 

  • Pernollet, J., Sallantin, M., Sallé-Tourne, M., and Huet, J., 1993, Elicitin isoforms from seven Phytophthora species: comparison of their physio-chemical properties and toxicity to tobacco and other plant species, Physiol. and Mol. Plant Pathol. 42: 53–67.

    Article  CAS  Google Scholar 

  • Powis, G., 1989, Free radical formation by antitumor quinones, Free Rad. Biol. Med. 6: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Rahimtula, A.D., Bereziat, J.C., Bussacchini-Griot, V., and Bartsch, H., 1988, Lipid peroxidation as a possible cause of ochratoxin A toxicity, Biochem. Pharmacol. 37: 4469–4477.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, S.M., Chagas, G.M., Campello, A.P., and Kluppel, M.L., 1997, Mechanism ofcitrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species, Cell Biochem. Funct. 1: 203–209.

    Article  Google Scholar 

  • Ricci, P., Bonnet, P., Huet, J., Sallantin, M., Beavais-Cante, F., Brunteau, M., Billard, V., Michel, G., and Pemollet, J., 1989, Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco, Eur. J. Biochem. 183: 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Rohnert, U., Heiser, I., Nemec, S., Baker, R., Oßwald, W., and Elstner, E.F., 1998, Diaphorase-mediated oxygen activation and uncoupling ofmitochondrial electron transport by naphthazarin toxins produced by Fusarium solani, J Plant Physiol. 15: 684–692.

    Article  Google Scholar 

  • Rusterucci, C., Stallaert, V., Milat, M., Pugin, A., Ricci, P., and Blein, J., 1996, Relationship between active oxygen species, lipid peroxidation, necrosis and phytoalexin production induced by elicitins in Nicotiana, Plant Physiol. 11: 885–891.

    Google Scholar 

  • Schäfer, W., 1994, Molecular mechanisms of fungal pathogenicity to plant, Ann. Rev. Phytopathol. 3: 461–477.

    Article  Google Scholar 

  • Serioukova, I.F., and Peterson, J.A., 1995, NADPH-P-450 reductase: Structural and functional comparisons of the eukaryotic and prokaryotic isoforms, Biochimie 77: 562–572.

    Article  Google Scholar 

  • Shin, S., Kim, Y.B., and Hur, G.H., 1999, Involvement ofphospholipase A2 activation in anthrax lethal toxin-induced cytotoxicity, Cell Biol. Toxicol. 15: 19–20.

    Article  PubMed  CAS  Google Scholar 

  • Skinnider, L., Stoessl, A., and Wang, J., 1989, Increased frequency of sister-chromatid exchange induced by dothistromin in CHO cells and human lymphocytes, Mutat. Res. 22: 167–170.

    Google Scholar 

  • Stoessl, A., 1984, Dothistromin as a metabolite of Cercospora arachidicola, Mycopathologia 86: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Synder, W. C., Georgopoulos, S.G., Webster, R.K., and Smith, S.N., 1975, Sexuality and genetic behavior in the fungus Hypomyces (Fusarium) solani f.sp. cucurbitae, Hilgardia 4: 161–185.

    Google Scholar 

  • Tavernier, E., Wendehenne, D., Blein, J.P., and Pugin, A., 1995, Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells, Plant Physiol. 10: 1025–1031.

    Google Scholar 

  • Terc-Laforgue, T., Huet, J., and Pernollet, J., 1992, Biosynthesis and secretion of cryptogein, a protein elicitor secreted by Phytophthora cryptogea, Plant Physiol. 98: 936–941.

    Article  Google Scholar 

  • Trebst, A., Donner, W., and Draber, W., 1984, Structure activity correlation of herbicides affecting plastoquinone reduction by photosystem II: electron density distribution in inhibitors and plastoquinone species, Z. Naturforsch. 39: 405–411.

    Google Scholar 

  • Viard, M.-P., Martin, F., Pugin, A., Ricci, P., and Blein, J.-P., 1994, Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein Plant Physiol. 10: 145–149.

    Google Scholar 

  • Yoder, O.C., 1980, Toxins in pathogenesis, Ann. Rev. Phytopathol. 18: 103–129.

    Article  CAS  Google Scholar 

  • Youngman, R.J., and Elstner, E.F., 1981, Oxygen species in paraquat toxicity: the crypto-OH radicals, FEBS-Lett. 129: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Youngman, R.J., and Elstner, E.F., 1984, Photodynamic and reductive mechanisms of oxygen activation by the fungal phytotoxins, cercosporin and dothistromin, in: Oxygen Radicals in Chemistry and Biology, W. Bors and M. Saran, eds., Walter de Gruyter and Co., Berlin, New York.

    Google Scholar 

  • Youngman, R.J., Schieberle, H., Schnabel, H., Grosch, W., and Elstner, E.F., 1983, The photodynamic generation of singlet molecular oxygen by the fungal phytotoxin, cercosporin, Photobiochem. Photobiol. 6: 109–119.

    CAS  Google Scholar 

  • Yu, L., 1995, Elicitins from Phytophthora and basic resistance in tobacco, Proc.Natl.Acad Sci. USA 92: 4088–4094.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heiser, I., Koehl, J., Elstner, E.F. (2002). Oxygen Activation by Fungal and Bacterial Toxins. In: Upadhyay, R.K. (eds) Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4439-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3384-3

  • Online ISBN: 978-1-4757-4439-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics