Skip to main content

Insecticidal Proteins of Bacillus Thuringiensis and Their Application in Agriculture

  • Chapter
Advances in Microbial Toxin Research and Its Biotechnological Exploitation

Abstract

The insecticidal bacterium Bacillus thuringiensis (Bt) is the most commercially successful biological control agent of insect pests (Glare and O’Callaghan, 2000). Bt is a ubiquitous soil bacterium isolated from soil, stored grain, insect cadavers and the phylloplane (plant surface) (Martin and Travers, 1989). Thus, three prevailing niches of Bt can be envisaged viz., as an entomopathogen, as a phylloplane inhabitant and as a soil microorganism. Bt is a gram-positive, aerobic, endosporeforming bacterium belonging to morphological group I along with Bacillus cereus, Bacillus anthracis, and Bacillus laterosporus (Parry et al., 1983). All these bacteria have endospores. Bt, however, is recognized by its parasporal body (known as the crystal) that is proteinaceous in nature and possesses insecticidal properties. The parasporal body comprises of crystals varying in size, shape and morphology (Figure 1). Bt does not have a significant history of mammalian pathogenicity, and research has concentrated on the insecticidal nature of the crystal proteins, especially Sendotoxins. Considerable amount of information with respect to various aspects of Bt such as fermentation (Bryant, 1994), biology and genetics (Aronson et al., 1986), molecular biology (Hofte and Whiteley, 1989; Kumar et al., 1996; Schnepf et al., 1998), mechanism of action (Knowles, 1994), application as biopesticide (Federici, 1999), and Bt transgenic plants (Schuler et al., 1998; de Maagd et al., 1999) is available. The classification and nomenclature of Bt toxins has been recently described (Crickmore et al., 1998). To date, more than 100 different genes encoding crystal proteins have been cloned from Bt and two other species (Schnepf et al., 1998). Recent information about Bt proteins/genes can be obtained from http://www.biols.susx.ac.uk/Home/Neil-CrickmoreSt/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alstad, D. N., and Andow, D. A., 1995, Managing the evolution of insect resistance to transgenic plants, Science 268: 1894–1896.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, A.I, Beckman, W., and Dunn. P., 1986, Bacillus thuringiensis and related insect pathogens, Microbiol. Rev. 50: 1–24.

    CAS  Google Scholar 

  • Arpaia, S., Chiriatti, K., and Gioro, G., 1998, Predicting the adaptation of Colorado potato beetle to transgenic eggplants expressing CryIll toxin: the role of gene dominance, migration and fitness cost, J. Econ. Entomol. 91: 21–29.

    CAS  Google Scholar 

  • Bar, E., Lieman-Hurwitz, J., Rahamim, E., Keynan, E., and Sandler, N., 1991, Cloning and expression of Bacillus thuringiensis israelensis S-endotoxin in B.sphaericus, J. Invertebr. Pathol. 57: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Barton, K. A., Whiteley H. R., and Yang N. S., 1987, Bacillus thuringiensis 5-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects, Plant Physiol. 85: 1103–1109.

    CAS  Google Scholar 

  • Baum, J. A., Coyle, D.M., Gilbert, M.P., Jany, C.S., and Gawron -Burke, C., 1990, Novel cloning vectors for Bacillus thuringiensis, Appl. Environ. Microbiol. 56: 3420–3428.

    PubMed  CAS  Google Scholar 

  • Baum, J.A., Johnson, T.B., and Carlton, B.C, 1998, Natural and recombinant bioinsecticide products. in: Biopesticides: Use and Delivery, F. R. Hall and J. J. Menn, ed., Humana Press, Totowa, pp. 189–209.

    Chapter  Google Scholar 

  • Becker, N., and Margalit, J., 1993, Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies, in: Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice, Entwistle, P. F., Cory, P. F., Margalit, M. J. and Higgs, S., eds, John. Wiley & Sons, New York, pp. 145–170.

    Google Scholar 

  • Berliner, E.,1915, Uber die Schaffsucht der Mehimottenraupe, Z. Angew. Entomol.2: 29–56.

    Google Scholar 

  • Bezdicek, D. F., Quinn, M. A., Forse, L., Heron, D., and Kahn, M. L., 1994, Insecticidal activity and competitiveness of Rhizobium spp containing the Bacillus thuringiensis subsp tenebrionis 8-endotoxin gene (cry III) in legume nodules, Soil Biol. Biochem. 26: 1637–1646.

    Article  CAS  Google Scholar 

  • Bora, R. S., Murthy, M. G., Shenbagarathai, R., and Sekar, V., 1994, Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere, Appl. Environ. Microbiol. 60: 214–222.

    PubMed  CAS  Google Scholar 

  • Boucias, D.G., and Pendiand, J.C., 1998, Principles oflnsect Pathology, Kluwer, Norwell, Massachusetts.

    Google Scholar 

  • Bravo, A., Jansens, S., and Peferoen, M., 1992, Immunocytochemical localization of Bacillus thuringiensis crystal proteins intoxicated insects, J. Invert. Pathol. 60: 237–246.

    Article  CAS  Google Scholar 

  • Bryant, J.E., 1994, Commercial production and formulation of Bacillus thuringiensis, Agric. Eco. Environ. 49: 31–35

    Article  Google Scholar 

  • Cao, J., Tang, J. D., Strizhov, N., Shelton, A. M., and Earle, E. D., 1999, Transgenic broccoli with high levels of Bacillus thuringiensis CrylA or Cry 1C protein control diamondback moth larvae resistant to Cry IA or Cry1C, Mol. Breed. 5: 131–141.

    Article  CAS  Google Scholar 

  • Caprio, M. A., 1998, Evaluating resistance management strategies for multiple toxins in the presence of external refuges, J. Econ. Entomol. 91: 1021–1031.

    Google Scholar 

  • Carlson, C. R., and Kolsto, A.B., 1993, A complete physical map of a Bacillus thuringiensis chromosome, J. Bacteriol. 175: 1053–1060.

    PubMed  CAS  Google Scholar 

  • Carozzi, N. B., Kramer, V. C., Warren G. W., Evola, S., and Koziel, M. G., 1991, Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles, Appl. Environ. Microbiol. 57: 3057–3061.

    PubMed  CAS  Google Scholar 

  • Carozzi, N. B., Warren, G. W., Desai, N., Jayne, S. M., Lotstein, R., Rice, D. A., Evola, S., and Koziel, M. G., 1992, Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco, Plant. Mol. Biol. 20: 538–539.

    Article  Google Scholar 

  • Chakrabarti, S.K., Mandaokar, A., Pattanayak, D., Shukla, A., Naik, P.S., Sharma, R.P., and Kumar, P.A., 2000, Bacillus thuringiensis crylAb gene confers resistance to potato against Helicoverpa armigera Hubner, Potato Res. 42: 227–23 8.

    Google Scholar 

  • Cheng, X., Sardana, R., Kaplan, H., and Altosaar, I., 1998, Agrobacterium-transformed rice plants expressing synthetic cry 1A(b) and crylA(c) genes are highly toxic to striped stem borer and yellow stem borer, Proc. Natl. Acad. Sci. USA. 95: 2767–2772.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D.H., 1998, Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 62: 807–813.

    PubMed  CAS  Google Scholar 

  • Curtis, C. F., 1985, Theoretical models of the use of insecticide mixtures for the management of resistance, Bull. Entomol. Res. 75: 259–265.

    Article  CAS  Google Scholar 

  • De Barjac, H., and Bonnefoi, A., 1962, Essai de classification biochimique et serologique de 24 sources de bacillus du type B. thuringiensis, Entomophaga 7: 5–31.

    Article  Google Scholar 

  • De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H., 2001, Over expression of the Bt ciy2Aa2 operan in chloroplasts leads to formation of insecticidal crystals, Nature Biotechnol. 19: 71–74.

    Article  Google Scholar 

  • Delecluse, A., Bourgouin, A., Klier, A., and Rapoport, G., 1989, Nucleotide sequence and characterization of a new insertion element IS 240 from Bacillus thuringiensis israelensis, Plasmid 21: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Delecluse, A., Rosso, M. L., and Ragni, A., 1995, Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. Jegathesan encoding a highly mosquitocidal protein, Appl. Environ. Microbiol.61: 4230–4235.

    Google Scholar 

  • de Maagd, R.A., Bravo, A., and Crickmore, N., 2001, How Bacillus thuringiensis has evolved specific toxins to colonize the insect world, Trends Genet.17: 193–199.

    Google Scholar 

  • de Maagd, R. A., Bosch, D., and Stiekema, W., 1999, Bacillus thuringensis toxin-mediated insect resistance in plants, Trends Plant Sci. 4: 9–13.

    Google Scholar 

  • Dulmage, H.T., 1970, Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var alesti, J. Invertebr. Pathol. 15: 232–239.

    Article  Google Scholar 

  • English, L., Robbins, H.L., Von Tersch, M., Kulesza, C.A., Ave, D., Coule, D., Jany, C.S., and Slatin,S.L., 1994, Mode of action of CryIIA: a Bacillus thuringiensis delta endotoxin, Insect Biochem. Molec. Biol. 24: 1025–1035.

    Article  CAS  Google Scholar 

  • Federici, B.A., 1999, Bacillus thuringiensis in biological control, in: Handbook of Biological Control, Academic Press, New York, pp. 575–593.

    Google Scholar 

  • Federici, B. A. and Bauer, L. S., 1998, CytlAa protein of Bacillus thuringiensis is toxic to the cotton-wood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa, Appl. Environ. Microbiol. 64: 4368–4371.

    PubMed  CAS  Google Scholar 

  • Feitelson, J. S., Payne, J., and Kim, L., 1992, Bacillus thuringiensis: insects and beyond, Bio/Technol. 10: 271–275.

    Google Scholar 

  • Ferre, J., Real, M. D., van Rie, J., Jansens, S., and Peferoen, M., 1991, Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor, Proc. Natl. Acad. Sci. USA 88: 5119–5123.

    Article  PubMed  CAS  Google Scholar 

  • Fischhof, D. A., Bowdisch, K.S., Perlak, F. J., Marrone, P.G., McCormick, S. H., Niedermeyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T., 1987, Insect tolerant transgenic tomato plants, Bio/Technol. 5: 807–813.

    Article  Google Scholar 

  • Forcada, C., Alacer, E., Garcera, M. D., and Martinez, R., 1996, Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins, Arch. Insect Biochem. Physiol. 31: 257–272.

    Article  CAS  Google Scholar 

  • Fox, J.L., 1998, Science panel urges EPA to mandate Bt resistance management, ASMNews 64: 379–380.

    Google Scholar 

  • Frutos, R., Rang, C., and Royer, M., 1999, Managing Insect resistance to plants producing Bacillus thuringiensis toxins, Grit. Rev. Biotech. 19: 227–276.

    Article  CAS  Google Scholar 

  • Gaertner, F. H., Quick T. C., and Thompson M. A., 1993, CelICap: an encapsulation system for insecticidal biotoxin proteins, in: Advanced Engineered Pesticides, L. Kim, ed., Marcel Dekker, New York, pp. 73–83.

    Google Scholar 

  • Gamel, P. H., and Piot, J. C., 1992, Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids, Gene 120: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Garczynski, S.F., and Adang, M.J., 1995, Cry l Ac delta endotoxin-binding aminopeptidase N in the Manduca sexta midgut has glycosyl-phosphotidylinositol anchor, Insect Biochem. Molec. Biol. 25: 409–415.

    Article  CAS  Google Scholar 

  • Gawron-Burke, C., and Baum, J. A., 1991, Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria, in: Genetic Engineering: Principles and Methods, Vol. 13, J. K. Setlow, ed., Plenum Press, New York, pp. 237–263.

    Google Scholar 

  • Gill, S. S., Cowels, E. A., and Pietrantonio, E. A., 1992, The mode of action of Bacillus thuringiensis endotoxins, Annu. Rev. Entomol. 37: 615–636.

    Article  PubMed  CAS  Google Scholar 

  • Glare, T. R., and O’Callaghan. M., 2000, Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley and Sons, Chichester, 350 p.

    Google Scholar 

  • Gonzalez, J.M. Jr., Brown, B. J., and Carlton, B.C., 1982, Transfer of Bacillus thuringiensis plasmids coding for delta endotoxins among strains of B. thuringiensis and B. cereus, Proc. Natl. Acad. Sci. USA 79: 6951–6955.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., 1994, Potential and problems with high-dose strategies for pesticidal engineered crops, Biocontrol Sci. Technol. 4: 451–461.

    Article  Google Scholar 

  • Gould, F., 1998, Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology, Annu. Rev. Entomol. 43: 701–726.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F. J., and Moar, W. J.,1992, Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens, Proc. Natl. Acad. Sci. USA 89: 7986–7990.

    Google Scholar 

  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J.L., Brousseau, R., and Cygler, M., 1995, Bacillus thuringiensis CrylAa insecticidal toxin: crystal structure and channel formation, J. Mol. Biol. 254: 447–464.

    CAS  Google Scholar 

  • Hassan, S.A., 1992, Testing methodology and the concept of the IOBC/WPRS working group. Pesticides and Non-target Invertebrates, Jepson. P, C., ed., Intercept, Wimborne, Dorset, pp 1–18.

    Google Scholar 

  • Hassan, S.A., Bigler, F, Bogenschutz, H., Brown, J.U., Firth, S.I., Huang, P., Ledieu, M.S., Naton, E., Oomen, P.A., Overmeer, W.P.J., Rieckmann, W., Peterson, W.S., Viggiani, G., and van Zon, A.Q., 1983, Results of the joint pesticide testing programme by the IOBC/WPRS-Working group “Pesticides and Beneficial Arthropods”, Z. Angew. Entomol. 95: 151–158.

    Article  Google Scholar 

  • Hernandez, J.L.L., 1988, Evaluation of toxicity of Bacillus thuringiensis to Spodopterafrugiperda, Entomophaga 33: 163–171.

    Article  Google Scholar 

  • Hofte, H., and Whiteley, H. R., 1989, Insecticidal crystal proteins ofBacillus thuringiensis, Microbiol. Rev. 53: 242–255.

    PubMed  CAS  Google Scholar 

  • Hoy, M. A., 1998, Myths: models and mitigation of resistance to pesticides, Phil. Trans. R. soc. Lond. 353: 1787–1795.

    Article  CAS  Google Scholar 

  • Husz, B., 1928, On the use of Bacillus thuringiensis in the fight against the corn borer, Int. Corn Borer Invest. Sci. Rep. 2: 99–110.

    Google Scholar 

  • Ishiwata, S., 1901, On a type of severe flacherie (sotto disease), Dainihan Sanbshi Kaiho 9: 1–5.

    Google Scholar 

  • Ives, A. R., 1996, Evolution of insect resistance to Bacillus thuringiensis-transformed plants, Science 273: 1412–1413.

    Article  Google Scholar 

  • Jansens, S., van Vliet, A., Dickburt, C., Buysse, L., Piens, C., Saey, B., De Wulf, A., Gossele, V., Paez, A., Gobel, E., and Peferoen, M., 1997, Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage, Crop Sci.37: 1616–1624.

    Google Scholar 

  • Kalman, S., Kiehne, K. L., Cooper, N., Reynoso, M. S., and Yamamoto, T., 1995, Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes, Appl. Environ. Microbiol. 61: 3063–3068.

    PubMed  CAS  Google Scholar 

  • Kennedy, G.G., and Whalon, M.E., 1995, Managing pest resistance to Bacillus thuringiensis endotoxins: constraints and incentives to implementation, J. Econ. Entomol. 88: 454–460.

    Google Scholar 

  • Knowles, B. H., 1994, Mechanism of action of Bacillus thuringiensis insecticidal 5-endotoxins, Adv. Insect Physiol. 24: 275–308.

    Article  CAS  Google Scholar 

  • Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M. R., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., and Evola, S. V., 1993, Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis, Bio/Technol. 11: 194–200.

    Article  CAS  Google Scholar 

  • Kronstad, J. W., and Whiteley, H. R., 1986, Three classes of homologous Bacillus thuringiensis crystal protein genes, Gene 43: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P.A., Sharma, R.P., and Malik, V.S., 1996, Insecticidal proteins of Bacillus thuringiensis, Adv Appl Microbiol. 42: 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, P.A., Mandaokar, A., Sreenivasu, K., Chakrabarti, S.K., Sharma, S.R., Bisaria, S., Kaur, S., and Sharma, R.P., 1998, Insect resistant transgenic brinjal plants, Mol. Breed. 4: 33–37

    Article  CAS  Google Scholar 

  • Lambert, B., and Peferoen, M., 1992, Insecticidal promise of Bacillus thuringiensis: facts and mysteries about a successful biopesticide, BioSci. 42: 112–122.

    Article  Google Scholar 

  • Lampel, J. S., Canter, G. L., Dimock, M. B., Kelly, J. L., Anderson, J. J., Uratani, B. B., Foulke, J. S. Jr., and Turner, J. T., 1994, Integrative cloning, expression, and stability of the cryla(c) gene from Bacillus thuringiensis subsp. Kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis, Appl. Environ. Microbiol. 60: 501–508.

    PubMed  CAS  Google Scholar 

  • Lereclus, D., Bourgouin, C., Lecadet, M. M., Klier, A., and Rapoport, G., 1989, Role, structure, and molecular organization of the genes coding for parasporal S-endotoxins of Bacillus thuringiensis, in: Regulation of Prokaryotic Development: Structural and Functional Analysis of Bacterial Sporulation and Germination, Smith, I., Slepecky, R. A. and Setlow, P., eds., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Lereclus, D., Vallade, M., Chaufaux, J., Arantes, O., and Rambaud, S., 1992, Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination, Bio/ Technol. 10: 418–421.

    CAS  Google Scholar 

  • Lereclus, D., Agaisse, H., Gominet, M., and Chaufaux, J., 1995, Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spOA mutant, Bio/ Technol. 13: 67–71.

    CAS  Google Scholar 

  • Leroy, T., Henry, A. M., Royer, M., Altosaar, I., Frutos, R., Duris, D. and Philippe, R., 2000, Genetically modified coffee plants expressing the Bacillus thuringiensis crylAc gene for resistance to leaf miner, Plant Cell Rep. 19: 382–389.

    Article  CAS  Google Scholar 

  • Li, J., Carroll, J., and Ellar, D. J., 1991, Crystal structure of insecticidal ä-endotoxin from Bacillus thuringiensis at 2.5 A° resolution, Nature 353: 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. B., and Tabashnik, B. E., 1997, Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis, Proc. R. Soc. Lond. 264: 605–610.

    Google Scholar 

  • Liu, Y. B., Tabashnik, B. E., and Pusztai-Carey, M., 1996, Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth ( Lepidoptera: Plutellidae),J. Econ. Entomol. 89: 798–804.

    Google Scholar 

  • Luthy, P., Cordier, J., and Fischer, J., 1982, Bacillus thuringiensis as a bacterial insecticide, in: Microbial and Viral Pesticides, E. Kurstak, ed., Marcel and Decker, New York, pp. 35–74.

    Google Scholar 

  • Macintosh, S. C., Kishore, G. M., Perlak, F. J., Marron, P. G., Stone, T. B., Sims, S. R., and Fuchs, R. L., 1990, Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors, J. Agric. Food Chem. 38: 1145–1152.

    Google Scholar 

  • Mandaokar, A., Goyal, R.K., Shukla, A., Bhalla, R., Chaurasia, A., Reddy, V.S., Altosaar, I., Sharma, R.P., and Kumar, P.A., 2000, Transgenic tomato plants resistant to fruitborer (Helicoverpa armigera Hubner), Crop Protect. 19: 307–312.

    Article  CAS  Google Scholar 

  • Martin, P. A. W., and Travers, R. S., 1989, Worldwide abundance and distribution of Bacillus thuringiensis isolates, Appl. Environ. Microbiol. 55: 2437–2442.

    PubMed  CAS  Google Scholar 

  • Maqbool, S.B., Husnain, T., Riazuddin, S., Massom, L., and Chritou, P., 1998, Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M 7 using the novel S-endotoxin cry2A Bacillus thuringiensis gene, Mol. Breed. 4: 501–507.

    Article  CAS  Google Scholar 

  • McBride, K.E., Svab, Z., Schaaf, D.J., Hogan, P.S., Stalker, D.M., and Maliga, P., 1995, Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein tobacco, Biotechnol. 13: 362–365.

    Article  CAS  Google Scholar 

  • Meade, T. and Hare, J. D., 1995, Integration of host plant resistance and Bacillus thuringiensis insecticides in the management of lepidopterous pests of celery, J. Econ. Entomol. 88: 1787–1794.

    Google Scholar 

  • Metz, T. D., Roush, R. T., Tang, J. D., Shelton, A. M., and Earle, E. D., 1995, Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies, Mol. Breed]: 309–317.

    Google Scholar 

  • Moellenbeck, D. J., Peters, M. L., Bing, J. W., Rouse, J. R., Higgins, L. S., Sims, L., Nevshemal, T., Marshall, L., Ellis, R. T., Bystrak, P. G., Lang, B. A., Stewart, J. L., Kouba, K., Sondag, V., Gustafson, V., Nour, K., Xu, D., Swenson, J., Zhang, J., Czapla, T., Schwab, G., Jayne, S., Stockhoff, B. A., Narva, K., Schnepf, H. E., Stelman, S. J., Poutre, C., Koziel, M., and Duck, N., 2001, Insecticidal proteins from Bacillus thuringiensis protect corn from corn root worms, Nature Biotechnol. 19: 668–672.

    Article  CAS  Google Scholar 

  • Nambiar, P. T. C., Ma, S. W., and Iyer, V. N., 1990, Limiting an insect infestation of Nitrogen-fixing root nodules of the Pigeonpea (Cajanu Cajan) by engineering the expression of an entomocidal gene in its root nodules, Appl. Environ. Microbiol. 56: 2866–2869.

    Google Scholar 

  • Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N.A., Ghosh, M., and Sen, S.K., 1997, Transgenic elite indica rice plants expressing Cry 1Ac delta-endotoxin of Bacillus thuringiensis are resistant against yellow stemborer, Proc Natl Acad Sci USA 94: 2111–2116

    Article  PubMed  CAS  Google Scholar 

  • Obukowicz, M. G., Perlak, F. J., Kusano-Kretzmer, K., Mayer, E. J., Bolten, S. L., and Watrud, L.S., 1986, Tn5mediated integration of the S-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonising pseudomonads, J. Bacteriol. 168: 982–989.

    PubMed  CAS  Google Scholar 

  • Onstad, D. W., and Gould, F., 1998, Do dynamics of crop maturation and herbivorous insect life cycle influence the risk of adaptation to toxins in transgenic host plants?, Environ. Entomol. 27: 517–522.

    Google Scholar 

  • Oppert, B., Kramer, K. J., Johnson, D. E., Maclnstosh, S. C., and McGaughey, W. H., 1994, Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella, Biochem. Biophys. Res. Commun. 198: 940–947.

    Google Scholar 

  • Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D., and McGaughey, W. H., 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. Biol. Chem. 272: 23473–23476.

    Google Scholar 

  • Parry, J.M., Turnbull, P.C.B., and Gibson, J.R., 1983, A Colour Atlas of Bacillus Species, Wolfe Medical, London, 99 p.

    Google Scholar 

  • Pattanayak, D., and Kumar, P. A., 2000, Plant biotechnology: Current advances and future perspectives, Proc. Indian Natl. Sci. Acad. B6: 265–310.

    Google Scholar 

  • Pattanayak, D., Srinivasan, K., Mandaokar, A., Shukla, A., Bhalla, R., Kumar, P. A., 2000, AFLP fingerprinting and genetic characterization of Bacillus thuringiensis subspecies, World J. Microbiol. Biotechnol. 16: 667–672.

    Article  CAS  Google Scholar 

  • Peferoen, M., 1997, Progress and prospects for field use of Bt genes in crops, Trends Biotechnol. 15: 173–177.

    Article  CAS  Google Scholar 

  • Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A., 1990, Insect resistant cotton plants, Bio/Technol. 8: 939–943.

    Article  CAS  Google Scholar 

  • Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S., Fischhoff, D.A. 1991, Modification of the coding sequence enhances plant expression of insect control genes, Proc. Natl. Acad. Sci. USA. 88: 3324–3328.

    Article  PubMed  CAS  Google Scholar 

  • Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., and Fishhoff, D. A., 1993, Genetically improved potatoes: protection from damage by Colorado potato beetles, Plant Mol. Biol. 22: 313–321.

    Article  PubMed  CAS  Google Scholar 

  • Raina, S.K., and Khanna, H., 2001, Elite indica transgenic rice plants expressing CrylAc endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer, Transgenic Res. (In press).

    Google Scholar 

  • Roush, R. T., 1989, Designing resistance management programs: how can you choose? Pestic. Sci. 26: 423–441.

    Article  CAS  Google Scholar 

  • Roush, R. T., 1997, Managing risk of resistance in pests to insect-tolerant transgenic crops, in: Commercialization of transgenic crops: Risks, Benefits and Trade Considerations, P.M., Evans, G., and Gibbs, M.J., eds., Waterhouse, Cooperative Research Center for Plant science and Bureau of Statistics, Canberra, Australia, pp. 259–271.

    Google Scholar 

  • Roush, R. T., 1998, Two-toxin strategies for management of insecticidal transgenic crops; can pyramiding succeed where pesticide mixtures have not?, Phil. Trans. R. Soc. Lond. 353: 1777–1786.

    Article  CAS  Google Scholar 

  • Schnepf, H. E., 1995, Bacillus thuringiensis toxins: regulation, activities and structural diversity, Curr.Opinion Biotech.6: 305–312.

    Google Scholar 

  • Schnepf, E., Crickmore, N:, Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., and Dean, D.H., 1998, Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev. 62: 775–806.

    Google Scholar 

  • Schuler, T.H., Poppy, G.M., and Denholm, I., 1998, Insect-resistant transgenic plants, Trends Biotech. 16: 168–175.

    Article  CAS  Google Scholar 

  • Shelton, A.M., Juliet, D., Tang, J.D., Roush, R.T., Metz, T.D., and Earle, E.D., 2000, Field tests on managing resistance to Bt-engineered plants, Nature Biotech. 18: 339–342.

    Article  CAS  Google Scholar 

  • Shu, Q., Ye, G., Cui, H., Cheng, X., Xiang, Y., Wu, D., Gao, M., Xia, Y., Hu, C., Sardana, R., and Altosaar, I., 2000, Transgenic rice plants with a synthetic cry 1Ab gene from Bacillus thuringiensis were highly resistant to eight lepidopteran pests, Mol. Breed. 6: 433–439.

    Article  CAS  Google Scholar 

  • Singsit, C., Adang, M. J., Lynch, R. E., Anderson, W. F., Wang, A., Cardineau, G., and Ozias-Akins, P., 1997, Expression of a Bacillus thuringiensis crylA (c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer, Transgenic Res. 6 (2): 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. A., and Couche, G. A., 1991, The phylloplane as a source of Bacillus thuringiensis variants, Appl. Environ. Microbiol. 57: 311–315.

    PubMed  CAS  Google Scholar 

  • Soltes-Rak, Kushner, E. D. J., Williams, D. D., and Coleman J. R., 1993, Effects of promoter modification on mosquitocidal crylVB gene expression in Synechococcus sp. strain 7942, Appl. Environ. Microbiol. 59: 2404–2410.

    PubMed  CAS  Google Scholar 

  • Stewart, C. N., Jr., Adang, M. J., All, J. N., Raymer, P. L., Ramachandran, S., and Parrott, W. A., 1996, Insect control and dosage effects in transgenic Canola containing a synthetic Bacillus thuringiensis crylAc gene, Plant Physiof. 112: 115–120.

    CAS  Google Scholar 

  • Steinhaus, E.A., 1951, Possible use of Bacillus thuringiensis as an aid in the biological control of the alfalfa caterpillar, Hilgardia 20: 359–381.

    Google Scholar 

  • Strizhov, N., Keller, M., Mathur, J., Koncz-Kalman, Z., Bosch, D., Prudovsky, E., Schell, J., Sneh, B., Koncz, C., and Zilberstein, A., 1996, A synthetic cry1C gene, encoding a Bacillus thuringiensis 8-endotoxin, confers

    Google Scholar 

  • Spodoptera resistance in alfalafa and tobacco, Proc. Natl. Acad. Sci. USA 93: 15012–15017.

    Google Scholar 

  • Tabashnik, B.E., 1994, Evolution of resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 39: 47–79.

    Google Scholar 

  • Tabashnik, B. E., 1998, Transgenic crops for the pacific basin: prospects and problems, in: Proceedings of the Australian Applied Entomology Research Conference, Vol. 1, University of Queensland, Australia, pp. 161–161.

    Google Scholar 

  • Tang, J. D., Shelton, A. M, van Rie, J., de Roeck, S., Moar, W. J., Roush, R. T., and Peferoen, M., 1996, Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella), Appl. Environ. Microbiol. 62: 564–569.

    PubMed  CAS  Google Scholar 

  • Udayasuriyan, V., Nakamura, A., Masaki, H., and Uozumi, T., 1995, Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonisingAzospirillum, World J. Microbiol. Biotechnol. 11: 163–167.

    Article  CAS  Google Scholar 

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beukeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987 Transgenic plants protected from insect attack, Nature 328: 33–37.

    Article  CAS  Google Scholar 

  • van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W. J., and Visser, B., 1994, Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry 1A(b) and cry 1C genes: a resistance management strategy, Plant Mol. Biol. 26: 51–59.

    Article  PubMed  Google Scholar 

  • Van Frankenhuyzen, K., 1990, Development and current status of Bacillus thuringiensis for control of defoliating forest insects, For. Chron. 66: 498–507.

    Google Scholar 

  • Wirth, M. C., Georghiou, G. P., and Federici, B. A. 1997, CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of Cry IV resistance in the mosquito, Culex quinquefasciatus, Proc. Natl. Acad Sci. USA. 94: 10536–10540.

    Article  PubMed  CAS  Google Scholar 

  • Wong, E. Y., Hironaka, C. M., and Fischhoff, D. A., 1992, Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants, Plant Mol. Biol. 20: 81–93.

    Google Scholar 

  • Zeigler, D.R., 1999, Bacillus thuringiensis and Bacillus cereus Catalog of Strains, Bacillus Genetic Stock Center, Columbus, p. 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, P.A., Bambawale, O.M. (2002). Insecticidal Proteins of Bacillus Thuringiensis and Their Application in Agriculture. In: Upadhyay, R.K. (eds) Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4439-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4439-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3384-3

  • Online ISBN: 978-1-4757-4439-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics