Skip to main content

Flow and Vascular Geometry

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 235))

Abstract

Fluid mechanical factors play an important role in the localization of sites of atherosclerosis, the focal deposition of platelets resulting in thrombosis, and the formation of aneurysms in the human circulation. The localization is confined mainly to regions of geometrical irregularity where vessels branch, curve and change diameter and where blood is subjected to sudden changes in velocity and/or direction. In such regions, flow is disturbed and separation of streamlines from the wall, with formation of eddies, is likely to occur. We shall describe the flow patterns and fluid mechanical stresses at these sites and consider their possible involvement in the genesis of the above mentioned vascular diseases. However, in order to understand the relationship between vessel geometry and the observed flow patterns, it is first necessary to deal with some aspects of the mechanics of flow in branching, expanding and curved vessels. Such a treatment will also serve to dispel the notion, common among physicians and surgeons, that the formation of eddies at sites of disturbed flow represents turbulent flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Karino and H.L. Goldsmith, Rheological factors in thrombosis and haemostasis, in: “Haemostasis and Thrombosis,” A.L. Bloom and D.P. Thomas, eds., Churchill Livingstone, London, England (1986).

    Google Scholar 

  2. H.L. Goldsmith, and J. Marlow, Flow behavior of erythrocytes. II. Concentrated suspensions of ghost cells, J. Colloid Interface Sci. 73: 383 (1979).

    Article  Google Scholar 

  3. H.L. Goldsmith, Red cell motions and wall interactions in tube flow, Fed. Proc. 30: 1578 (1971).

    PubMed  CAS  Google Scholar 

  4. A. Kamis, H.L. Goldsmith, and S.G. Mason, The kinetics of flowing dispersions. I. Concentrated suspensions of rigid particles, J. Colloid Interface Sci. 22: 531 (1966).

    Article  Google Scholar 

  5. F.P. Gauthier, H.L. Goldsmith, and S.G. Mason, Flow of suspensions through tubes. X. Liquid drops as models of erythrocytes, Biorheology 9: 205 (1972).

    PubMed  CAS  Google Scholar 

  6. E.B. Vadas, H.L. Goldsmith, and S.G. Mason, The microrheology of colloidal dispersions. III. Concentrated emulsions, Trans. Soc. Rheol. 20: 373 (1976).

    Article  CAS  Google Scholar 

  7. W.W. Nichols, and M.F. O’Rourke, “MacDonald’s Blood Flow in Arteries: Theoretic, Experimental and Clinical Principles,” 3rd ed., Lea and Febiger, Philadelphia (1990).

    Google Scholar 

  8. M.A. Reidy, and D.E. Bowyer, Scanning electron microscopy of arteries. The morphology of aortic endothelium in hemodynamically stressed areas associated with branches, Atherosclerosis 26: 181 (1977).

    Article  PubMed  CAS  Google Scholar 

  9. S. Glagov, Hemodynamic risk factors: Mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis, in: “The Pathogenesis of Atherosclerosis,” R.W. Wissler and J.C. Geer, eds., Williams and Wilkins, Baltimore (1972).

    Google Scholar 

  10. D.L. Fry, Hemodynamic factors in atherogenesis, in: “Cardiovascular Diseases,” P. Scheinberg, ed., Raven Press, New York (1976).

    Google Scholar 

  11. M.R. Roach, The effect of bifurcations and stenoses on arterial disease, in: “Cardiovascular Flow Dynamics and Measurements,” N.H.C. Hwang and N.A. Normann, eds., University Park Press, Baltimore (1977).

    Google Scholar 

  12. J.F. Mustard, E.A. Murphy, H.C. Rowsell, and H.G. Downie, Factors influencing thrombus formation in vivo, Am. J. Med. 33: 621 (1962).

    Article  PubMed  CAS  Google Scholar 

  13. J.F. Mustard, and M.A. Packham, The role of blood and platelets in atherosclerosis and the complications of atherosclerosis, Thromb. Diathes. Haemorrh. 33: 444 (1975).

    CAS  Google Scholar 

  14. H.D. Geissinger, J.F. Mustard, and H.C. Rowsell, The occurrence of microthrombi on the aortic endothelium of swine, Can. Med. Assoc. J. 87: 405 (1962).

    PubMed  CAS  Google Scholar 

  15. J.R.A. Mitchell, and C.J. Schwartz, The relationship between myocardial lesions and coronary disease. II. A select group of patients with massive cardiac necrosis of scarring, Brit. Heart J. 25: 1 (1963).

    Article  PubMed  CAS  Google Scholar 

  16. M.A. Packham, H.C. Roswell, L. Jorgensen, and J.F. Mustard, Localized protein accumulation in the wall of the aorta, Exp. Mol. Path. 7: 214 (1967).

    Article  CAS  Google Scholar 

  17. S.K. Yu, and H.L. Goldsmith, Behavior of model particles and blood cells at spherical obstructions in tube flow, Microvasc. Res. 6: 5 (1973).

    Article  PubMed  CAS  Google Scholar 

  18. T. Karino, and H.L. Goldsmith, Flow behaviour of blood cells and rigid spheres in an annular vortex, Phil. Trans. Roy. Soc. (London) B 279: 413 (1977).

    Article  CAS  Google Scholar 

  19. T. Karino, H.H.M. Kwong, and H.L. Goldsmith, Particle flow behavior in models of branching vessels: I. Vortices in 90° T junctions, Biorheology 16: 231 (1979).

    PubMed  CAS  Google Scholar 

  20. T. Karino, and H.L. Goldsmith, Particle flow behavior in models of branching vessels. II. Effect of branching angle and diameter ratio on flow patterns, Biorheology 22: 87 (1985).

    PubMed  CAS  Google Scholar 

  21. T. Karino, and M. Motomiya, Flow visualization in isolated transparent natural blood vessels, Biorheology 20: 119 (1983).

    PubMed  CAS  Google Scholar 

  22. T. Karino, and M. Motomiya, Flow through a venous valve and its implication in thrombus formation, Thromb. Res. 36: 245 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. M. Motomiya, and T. Karino, Particle flow behavior in the human carotid artery bifurcation, Stroke 15: 50 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. T. Karino, M. Motomiya and H.L. Goldsmith, Flow patterns in model and natural vessels, in: “Biologic and Synthetic Vascular Prostheses,” J. Stanley, ed., Grune and Stratton, New York (1982).

    Google Scholar 

  25. T. Karino, M. Motomiya, and H.L. Goldsmith, Flow patterns at the major T-junctions of the dog descending aorta, J. Biomechanics 23: 537 (1990).

    Article  CAS  Google Scholar 

  26. T. Karino, Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases, Intern. Angiology 5: 297 (1986)

    CAS  Google Scholar 

  27. T. Asakura, and T. Karino, Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circ. Res. 66: 1045 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. M. Anliker, M. Casty, P. Friedli, R. Kubli and H. Keller, Non-invasive measurement of blood flow, in: “Cardiovascular Flow Dynamics and Measurements,” N.H.C. Hwang and N.A. Normann, eds., University Park Press, Baltimore (1977).

    Google Scholar 

  29. A. Bollinger, P. Butti, P. Barras, H. Trachler, and N. Siegenthaler, Red blood cell velocity in nailfold capillaries of man, measured by a television microscopy technique, Microvasc. Res. 6: 61 (1974).

    Article  Google Scholar 

  30. J.H. Forrester, and E.F. Young, Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical development, J. Biomech. 3: 297 (1970).

    Article  PubMed  CAS  Google Scholar 

  31. J.H. Forrester, and E.F. Young, Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical and experimental results and their implications, J. Biomech. 3: 307 (1970).

    Article  PubMed  CAS  Google Scholar 

  32. J.-S. Lee, and Y.-C. Fung, Flow in non-uniform small blood vessels, Microvasc. Res. 3: 272 (1973).

    Article  Google Scholar 

  33. M.D. Deshpande, D.P. Giddens, and R.F. Mabon, Steady laminar flow through modelled vascular stenoses, J. Biomech. 9: 165 (1976).

    Article  PubMed  CAS  Google Scholar 

  34. E.O. Macagno, and T.-K. Hung, Computational and experimental study of a captive annular eddy, J. Fluid Mech. 28: 43 (1967).

    Article  Google Scholar 

  35. T.-K. Hung, Vortices in pulsatile flows, in: “Proceedings of 5th International Congress of Rheology,” S. Onogi, ed., University Park Press, Baltimore (1970).

    Google Scholar 

  36. K. Perktold, Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology 26: 1011 (1989).

    PubMed  CAS  Google Scholar 

  37. H.L. Goldsmith, and V.T. Turitto, Rheological aspects of thrombosis and haemostasis: Basic principles and applications, Thromb Haemost. 55: 415 (1986).

    PubMed  CAS  Google Scholar 

  38. N.S. Lynn, V.G. Fox, and L.W. Ross, Computation of fluid dynamical contributions to atherosclerosis at arterial bifurcations, Biorheology 9: 61 (1972).

    PubMed  CAS  Google Scholar 

  39. R. Brech, and B.J. Bellehouse, Flow in branching vessels, Cardiovasc. Res. 7: 593 (1973).

    Article  PubMed  CAS  Google Scholar 

  40. L.W. Ehrlich, Digital simulation of periodic flow in a bifurcation, Computer and Fluids 2: 237 (1974).

    Article  Google Scholar 

  41. K. Kandarpa, and N. Davids, Analysis of the fluid dynamic effects on atherogenesis at branching sites, J. Biomech. 9: 735 (1976).

    Article  PubMed  CAS  Google Scholar 

  42. V.O. O’Brien, L.W. Ehrlich, and M.H. Friedman, Unsteady flow in a branch, J. Fluid Mech. 75: 315 (1976).

    Article  Google Scholar 

  43. D. Agonaffer, C.B. Watkins, and J.N. Cannon, Computation of steady flow in a two-dimensional arterial model, J. Biomech. 18: 695 (1985).

    Article  Google Scholar 

  44. G. Enden, M. Israeli, and U. Dinnar, A numerical simulation of the flow in a T-type bifurcation and its application to an ‘end to side’ fistula, J. Biomech. Eng. 107: 321 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. C.C.M. Rindt, A.A. van Steenhoven, A. Segal, R.S. Reneman, and J.D. Jansen, Analysis of the flow field in a 3D-model of carotid artery bifurcation, in: “Proceedings of the World Congress of Medical Physics and Biomedical Engineering,” J.W. Clark, P.I. Horner, A.R. Smith, and K. Strum, eds., Physics in Med. Biol. 33:,375 (1988).

    Google Scholar 

  46. R.G. Cox, and S.K. Hsu, The lateral migration of solid particles in a laminar flow near a plane wall, Int. J. Multiphase Flow 3: 201 (1977).

    Article  CAS  Google Scholar 

  47. A. Karnis, and S.G. Mason, The flow of suspensions through tubes. VI. Meniscus effects, J. Colloid Interface Sci. 23: 120 (1967).

    Article  CAS  Google Scholar 

  48. T. Karino, and H.L. Goldsmith, Aggregation of platelets in an annular vortex distal to a tubular expansion, Microvasc. Res. 17: 217 (1979).

    Article  PubMed  CAS  Google Scholar 

  49. M. von Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physik. Chem. 92: 129 (1917).

    Google Scholar 

  50. T.G.M. van de Ven, and S.G. Mason, The microrheology of colloidal dispersions. VII. Orthokinetic doublet formation of spheres, Colloid Polymer Sci. 255: 468 (1977).

    Article  Google Scholar 

  51. T. Karino, and H.L. Goldsmith, Adhesion of human platelets to collagen on the walls distal to a tubular expansion, Microvasc. Res. 17: 238 (1979).

    Article  PubMed  CAS  Google Scholar 

  52. V.T. Turitto, Viscosity, transport and thrombogenesis, in: “Progress in Hemostasis and Thrombosis,” T.H. Spaet, ed., Grune and Stratton, New York (1982).

    Google Scholar 

  53. H.L. Goldsmith and T. Karino, Mechanically induced thromboemboli, in: “Quantitative Cardiovascular Studies: Clinical and Research Applications,” N.H.C. Hwang, D.R. Gross and D.J. Patel, eds., University Park Press, Baltimore (1978).

    Google Scholar 

  54. T. Karino, and H.L. Goldsmith, Role of cell-wall interactions in thrombogenesis and atherogenesis: A microrheological study, Biorheology 21: 587 (1984).

    PubMed  CAS  Google Scholar 

  55. L. Diener, J.L.E. Ericsson and F. Lund, The role of venous valve pockets in thrombogenesis. A postmortem study in a geriatric unit, in: “Atherogenesis”, T. Shimamoto and F. Numano, eds., Excerpta Medica, Amsterdam (1969).

    Google Scholar 

  56. S. Sevitt, Pathology and pathogenesis of deep vein thrombi, in: “Venous Problem,” J.J. Bergan and J.S.T. Yao, eds., Year Book Medical Publishers, Chicago (1978).

    Google Scholar 

  57. K. Kristiansen, and J. Krog, Electromagnetic studies on the blood flow through the carotid system in man, Neurology 12: 20 (1962).

    Article  PubMed  CAS  Google Scholar 

  58. S. Uematsu, A. Yang, T.J. Preziosi, R. Kouba, and T.J.K. Toung, Measurement of carotid blood flow in man and its clinical application, Stroke 14: 256 (1983).

    Article  PubMed  CAS  Google Scholar 

  59. Y. Sohara and T. Karino, Secondary flows in the dog aortic arch, in: “Fluid Control and Measurement,” M. Harada, ed., Pergamon Press, Oxford (1985).

    Google Scholar 

  60. T. Karino, N. Kobayashi, S. Mabuchi, and S. Takeuchi, Role of hemodynamic factors in the localization of saccular aneurysms in the human circle of Willis, Biorheology 26: 526 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldsmith, H.L., Karino, T. (1992). Flow and Vascular Geometry. In: Hwang, N.H.C., Turitto, V.T., Yen, M.R.T. (eds) Advances in Cardiovascular Engineering. NATO ASI Series, vol 235. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4421-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4421-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3228-0

  • Online ISBN: 978-1-4757-4421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics