Skip to main content

Left-Right Symmetric Models of Weak Interactions

  • Chapter
  • 372 Accesses

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

Abstract

While the standard electro-weak model, based on the spontaneously broken local symmetry SU(3) c × SU(2) L × U(1) Y , has been extremely successful in the description of low-energy weak phenomena, it leaves a lot of questions unanswered. One of the unsolved problems is understanding the origin of parity violation in low-energy physics. An interesting approach is to assume that the interaction Lagrangian (or dynamics) is intrinsically left-right symmetric, the asymmetry observed in nature (i.e., β-decay and μ-decay, etc.) arising from the vacuum being noninvariant under parity symmetry. Within the framework of gauge theories this idea has found its realization in the SU(2) L × SU(2) R × U(1) B -L models [1] constructed in 1973–1974. An important feature of this model is that, at low energies, it reproduces all the features of the SU(2) L × U(1) model, and as we move up in energies new effects associated with parity invariance of the Lagrangian (such as a second neutral Z-boson, right-handed charged currents, right-handed neutrino) are supposed to appear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);

    ADS  Google Scholar 

  2. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566, 2558 (1975);

    ADS  Google Scholar 

  3. G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975).

    ADS  Google Scholar 

  4. J. F. Wilkerson et al., Phys. Rev. Lett. 58, 2023 (1987);

    Article  ADS  Google Scholar 

  5. H. Kawakami et al., Phys. Lett. 187B, 198 (1987).

    Google Scholar 

  6. R. Davis, Jr., Neutrino ‘88 (edited by J. Schneps et al.), World Scientific, Singapore, 1988;

    Google Scholar 

  7. K. K. Hirata, et al., Phys. Rev. Lett. 63, 16 (1989); 65, 1297, 1301 (1990).

    Google Scholar 

  8. R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B, 222 (1980);

    Google Scholar 

  9. A. Davison, Phys. Rev. D20, 776 (1979).

    ADS  Google Scholar 

  10. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1979).

    ADS  Google Scholar 

  11. D. Chang, Nucl. Phys. B214, 435 (1983);

    Article  ADS  Google Scholar 

  12. G. Brano, J. M. Frere, and J. M. Gerard, Nucl. Phys. B221, 317 (1983).

    Article  ADS  Google Scholar 

  13. D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. Lett. 50,1072 (1984); Phys. Rev. D30, 1052 (1984).

    Article  ADS  Google Scholar 

  14. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); Phys. Rev. D23, 165 (1981).

    ADS  Google Scholar 

  15. R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).

    Article  Google Scholar 

  16. V. Barger, E. Ma, and K. Whisnant, Phys. Rev. D26, 2378 (1982);

    Article  ADS  Google Scholar 

  17. I. Liede, J. Malampi, and M. Roos, Nucl. Phys. B146, 157 (1978);

    Article  ADS  Google Scholar 

  18. T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);

    ADS  Google Scholar 

  19. V. Barger, J. Hewett, and T. Rizzo, Phys. Rev. D42, 152 (1990).

    ADS  Google Scholar 

  20. M. Gell-Mann, P. Ramand, and R. Slansky, in Supergravity (edited by D. Freedman et al.), North-Holland, Amsterdam, 1979; T. Yanagida, KEK lectures, 1979;

    Google Scholar 

  21. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Article  ADS  Google Scholar 

  22. M. Gronau and S. Nussinov, Fermilab preprint, 1982;

    Google Scholar 

  23. M. Gronau and R. Yahalom, Nucl. Phys. B236, 233 (184).

    Google Scholar 

  24. M. A. B. Beg, R. Budny, R. N. Mohapatra, and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977);

    Article  ADS  Google Scholar 

  25. For a subsequent extensive analysis see J. Maalampi, K. Mursula, and M. Roos, Nucl. Phys. B207, 233 (1982).

    Article  ADS  Google Scholar 

  26. M. Roos et al., Phys. Lett. 111B, 1 (1982).

    Google Scholar 

  27. F. W. Koks and J. Vanklinken, Nucl. Phys. A272, 61 (1976).

    Article  Google Scholar 

  28. J. Carr et al., Phys. Rev. Lett. 51, 627 (1983);

    Article  ADS  Google Scholar 

  29. A. Jodidio et al., Phys. Rev. D34, 1967 (1986).

    ADS  Google Scholar 

  30. F. Corriveau et al., Phys. Rev. D24, 2004 (1981); Phys. Lett. 129B, 260 (1983).

    ADS  Google Scholar 

  31. T. Yamazaki et al., KEK preprint, 1983.

    Google Scholar 

  32. B. Holstein and S. Treiman, Phys. Rev. D16, 2369 (1977).

    ADS  Google Scholar 

  33. D. Bryman, Talk at Mini-Conference on Low-Energy Tests of Conservation Law, 1983.

    Google Scholar 

  34. T. Yamazaki et al., KEK preprint, 1983.

    Google Scholar 

  35. I. I. Bigi and J. M. Frere, Phys. Lett. 110B, 255 (1982).

    Google Scholar 

  36. J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).

    Google Scholar 

  37. G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).

    Article  ADS  Google Scholar 

  38. Earliest use of vacuum saturation of short distance contribution to KL — Ks mass difference was by

    Google Scholar 

  39. R. N. Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968);

    Article  ADS  Google Scholar 

  40. B. L. Ioffe and E. Shabalin, Soy. J. Nucl. Phys. 6, 328 (1967).

    Google Scholar 

  41. M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).

    Article  ADS  Google Scholar 

  42. See J. Trampetic, Phys. Rev. D27, 1565 (183) for a discussion of this point.

    Google Scholar 

  43. R. N. Mohapatra, G. Senjanovic, and M. Tran, Phys. Rev. D28, 546 (1983);

    ADS  Google Scholar 

  44. G. Ecker, W. Grimus, and H. Neufeld, Phys. Lett. 127B, 365 (1983);

    Google Scholar 

  45. H. Harari and M. Leurer, Nucl. Phys. B223, 221 (1983);

    Google Scholar 

  46. F. Gilman and M. Reno, Phys. Rev. D29, 937 (1974).

    Google Scholar 

  47. L. Wolfenstein, Nucl. Phys. B160, 1979 (1981);

    Google Scholar 

  48. C. Hill, Phys. Lett. 97B, 275 (1980).

    Google Scholar 

  49. I. I. Bigi and J. M. Frere, Phys. Lett. 1106, 255 (1982);

    Google Scholar 

  50. G. Ecker and W. Grimus, Nucl. Phys. B258, 328 (1985).

    Article  ADS  Google Scholar 

  51. R. N. Mohapatra, F. E. Paige, and D. P. Sidhu, Phys. Rev. D17, 2642 (1978).

    Google Scholar 

  52. R. Barbieri and R. N. Mohapatra, Phys. Rev. D39, 1229 (1989);

    ADS  Google Scholar 

  53. G. Raffelt, and D. Seckel, Phys. Rev. Lett. 60, 1793 (1988).

    Article  ADS  Google Scholar 

  54. lb] R. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987);

    Google Scholar 

  55. K. Hirat et al., Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  56. R. N. Mohapatra, Phys. Rev. D34, 909 (1986).

    Article  Google Scholar 

  57. A. Datta and A. Raychaudhuri, Phys. Rev. D28, 1170 (1983);

    ADS  Google Scholar 

  58. F. Olness and M. E. Ebel, Phys. Rev. D30, 1034 (1984);

    ADS  Google Scholar 

  59. P. Langacker and S. Umashankar, Phys. Rev. D40, 1569 (1989).

    ADS  Google Scholar 

  60. J. Gunion and B. Kayser, Proceedings of the 1984 Snowmass meeting (edited by R. Donaldson et. al.), p. 153;

    Google Scholar 

  61. G. Altarelli, B. Mele, and M. Ruiz Altaba, CERN preprint (1989);

    Google Scholar 

  62. F. Feruglio, L. Maiani, and A. Masiero, Padova preprint (1989);

    Google Scholar 

  63. W. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983).

    Article  ADS  Google Scholar 

  64. Recent books on massive neutrinos are: R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific, Singapore, 1991;

    Google Scholar 

  65. B. Kayser, F. Gibradebu, and F. Perrier, Massive Neutrino, World Scientific Singapore, 1989.

    Google Scholar 

  66. H. Robertson, Talk at PASCOS, 1991.

    Google Scholar 

  67. R. Abela et al., Phys. Lett. 146B, 431 (1984).

    Google Scholar 

  68. H. Albrecht et al., Phys. Lett. 202B, 149 (1988).

    Google Scholar 

  69. For a review see F. Boehm, Proceedings of “PASCOS-91” (edited by P. Nath) (to appear).

    Google Scholar 

  70. For a pedagogical review see R. N. Mohapatra, Forschritte Phys. 31, 185 (1983).

    Article  Google Scholar 

  71. D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1819 (1978).

    Google Scholar 

  72. S. Sarkar and A. M. Cooper, Phys. Lett. 148B, 347 (1984);

    Google Scholar 

  73. K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775 (1977);

    Article  ADS  Google Scholar 

  74. R. Cowsik, Phys. Rev. Lett. 39, 784 (1977);

    Article  ADS  Google Scholar 

  75. D. Lindley, Monthly Notices Roy. Astronom. Soc. 188, 15 (1979).

    ADS  Google Scholar 

  76. R. N. Mohapatra and J. D. Vergados, Phys. Rev. Lett. 47, 1713 (1981);

    Article  ADS  Google Scholar 

  77. C. Piccioto and M. Zahir, Phys. Rev. D26, 2320 (1982).

    ADS  Google Scholar 

  78. B. Kayser, Phys. Rev. D26, 1662 (1982).

    ADS  Google Scholar 

  79. L. Wolfenstein, Phys. Lett. 107B, 77 (1981).

    Google Scholar 

  80. J. Valle, Phys. Rev. D27, 1672 (1983);

    ADS  Google Scholar 

  81. S. Petcov, Phys. Lett. 110B, 245 (1982);

    Google Scholar 

  82. M. Doi, M. Kenmoku, T. Kotani, H. Nishiura, and E. Taskasugi, Osaka preprint OS-GE-83–48, 1983.

    Google Scholar 

  83. K. M. Case, Phys. Rev. 107, 307 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. D. Chang and R. N. Mohapatra, Phys. Rev. D32, 1248 (1985).

    ADS  Google Scholar 

  85. R. N. Mohapatra and S. Nussinov, Phys. Rev. D39, 1378 (1989).

    ADS  Google Scholar 

  86. M. Roncadelli and G. Senjanovic, Phys. Lett. 107B, 59 (1983).

    Google Scholar 

  87. P. Pal, Nucl. Phys. B227, 237 (1983).

    Article  ADS  Google Scholar 

  88. S. Pakvasa and B. McKellar, Phys. Lett. 122B, 33 (1983).

    Google Scholar 

  89. Y. Hosotani, Nucl. Phys. B191, 411 (1981);

    Article  ADS  Google Scholar 

  90. J. Schecter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).

    ADS  Google Scholar 

  91. For a recent discussion see S. Sarkar and A. M. Cooper, Phys. Lett. 148B, 347 (1984).

    Google Scholar 

  92. H. Primakoff and S. P. Rosen, Rep. Progr. Phys. 22, 121 (1959); Proc. Phys. Soc. (London) 78, 464 (1961);

    Google Scholar 

  93. A. Halprin, P. Minkowski, H. Primakoff, and S. P. Rosen, Phys. Rev. D13, 2567 (1976);

    ADS  Google Scholar 

  94. M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E Takasugi, Prog. Theor. Phys. 66, 1765 (1981); 68, 348 (1982) (E);

    Google Scholar 

  95. W. Haxton, G. J. Stephenson, Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981); Phys. Rev. D25, 2360 (1982);

    ADS  Google Scholar 

  96. J. D. Vergados, Phys. Rev. C24, 640 (1981).

    Article  Google Scholar 

  97. F. Avignone et al., Talk at Fourth Workshop on Grand Unification, held in Philadelphia, 1983;

    Google Scholar 

  98. E. Fiorini, Proceedings of XXI International Conference on High Energy Physics, Paris, 1982;

    Google Scholar 

  99. D. Caldwell et al., Phys. Rev. Lett. 59, 419 (1987);

    Article  ADS  Google Scholar 

  100. H. Ejiri et al., J. Phys. G13, 839 (1987).

    Article  ADS  Google Scholar 

  101. Riazuddin, R. E. Marshak, and R. N. Mohapatra, Phys. Rev. D24, 1310 (1981).

    ADS  Google Scholar 

  102. R. N. Mohapatra, Nucl. Instr. Methods A284, 1 (1989), for a review.

    Google Scholar 

  103. W. Caswell, J. Milutinovic, and G. Senjanovic, Phys. Rev. D26, 161 (1982);

    ADS  Google Scholar 

  104. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982).

    Google Scholar 

  105. J. Pasupathy, Phys. Lett B (to be published);

    Google Scholar 

  106. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982);

    Google Scholar 

  107. U. Sarkar and S. P. Misra, Phys. Rev. D28, 249 (1983).

    Google Scholar 

  108. K. Chetyrkin et al., Phys. Lett. 99B, 358 (1981);

    MathSciNet  Google Scholar 

  109. P. G. Sandars, J. Phys. G6, L161 (1980);

    Article  ADS  Google Scholar 

  110. Riazzuddin, Phys. Rev. D25, 885 (1982);

    ADS  Google Scholar 

  111. C. Dover, M. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);

    ADS  Google Scholar 

  112. W. Alberico et al., Phys. Lett. 114B, 266 (1982);

    Google Scholar 

  113. A. Kerman et al., MIT preprint, 183;

    Google Scholar 

  114. For a review see: R. N. Mohapatra, Proceedings of the Harvard Workshop on N — N Oscillation, 1982.

    Google Scholar 

  115. R. Bionta et al., Phys. Lett. 114B, 266 (1982);

    Google Scholar 

  116. V. L. Narasimhan et al., Chapter V; For other references, see Chapter V.

    Google Scholar 

  117. Barnes et al., Phys. Rev. Lett. 29, 1132 (1972);

    Article  ADS  Google Scholar 

  118. Poth et al., Nucl. Phys. A294, 435 (1977);

    Google Scholar 

  119. Roberson et al., Phys. Rev. C16, 1945 (1977);

    Article  ADS  Google Scholar 

  120. For a review see C. J. Batty, Rutherford Laboratory preprint, 1981.

    Google Scholar 

  121. J. Cote et al., Phys. Rev. Lett. 48, 13198 (1982).

    Article  Google Scholar 

  122. R. Auerbach et al., Phys. Rev. Lett. 46, 702 (1980).

    Article  ADS  Google Scholar 

  123. Riazzuddin, Phys. Rev. D25, 885 (1982).

    ADS  Google Scholar 

  124. C. Dover, A. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);

    ADS  Google Scholar 

  125. A. Kerman et al., MIT preprint, 1983.

    Google Scholar 

  126. L. Jones et al., Phys. Rev. Lett. 52, 720 (1984).

    Article  ADS  Google Scholar 

  127. P. K. Kabir, Phys. Rev. Lett. 51, 231 (1983).

    Article  ADS  Google Scholar 

  128. S. L. Glashow, Cargese lectures, 1979.

    Google Scholar 

  129. R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183 (1980).

    Google Scholar 

  130. M. Baldoceolin et al., CERN preprint (1983).

    Google Scholar 

  131. A. Higgs model realization of this idea has been discussed recently by J. C. Pati, A. Salam, and U. Sarkar, University of Maryland preprint, 1983.

    Google Scholar 

  132. The 0(B + L) = 0 result was first realized in a composite model by H. Harari, R. N. Mohapatra, and N. Seiberg, Nucl. Phys. B209, 174 (1982).

    Article  Google Scholar 

  133. G. Fidecaro et al., Phys. Lett. B156, 122 (1985).

    Google Scholar 

  134. M. Baldoceolin et al., Phys. Lett. B236, 95 (1990).

    Google Scholar 

  135. S. Ratti et al., Z. Phys. C43, 175 (1989).

    Google Scholar 

  136. D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Panda, Phys. Rev. D31, 1718 (1985).

    Article  ADS  Google Scholar 

  137. A. Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987);

    Article  ADS  Google Scholar 

  138. S. Rajpoot, Phys. Lett. B191, 122 (1987).

    Google Scholar 

  139. The quark see-saw idea was first considered only for down quarks in D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987).

    Article  Google Scholar 

  140. R. N. Mohapatra, Phys. Lett. 210B, 517 (1988);

    Google Scholar 

  141. K. S. Babu and X. He, Mod. Phys. Lett. A4, 61 (1989).

    Article  ADS  Google Scholar 

  142. K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D41, 1286 (1990).

    Article  Google Scholar 

  143. B. S. Balakrishna, Phys. Rev. Lett. 60, 1602 (1988);

    Article  ADS  Google Scholar 

  144. B. S. Balakrishna, A. Kagan and R. N. Mohapatra, Phys. Lett. 205B, 345 (1988);

    Google Scholar 

  145. B. S. Balakrishna and R. N. Mohapatra, Phys. Lett. 216B, 349 (1989).

    Google Scholar 

  146. J. Bahcall, Neutrino Astrophysics, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  147. R. Davis, Ref. [3].

    Google Scholar 

  148. K. Hirate et al., Ref. [3].

    Google Scholar 

  149. V. N. Gavrin, talk at “Neutrino ‘90” Conference (1990).

    Google Scholar 

  150. S. Mikheyev and A. Y. Smirnov, Nuovo Cimento 9C, 17 (1986);

    Article  Google Scholar 

  151. L. Wolfenstein, Phys. Rev. D17, 2369 (1978).

    ADS  Google Scholar 

  152. L. Okun, M. Voloshin, and M. Vysotskii, JETP 64, 446 (1986).

    Google Scholar 

  153. S. M. Barr, E. Freire, and A. Zee, Phys. Rev. Lett. 65, 262 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1992). Left-Right Symmetric Models of Weak Interactions. In: Unification and Supersymmetry. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4373-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4373-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4375-3

  • Online ISBN: 978-1-4757-4373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics