Skip to main content

Immunology in Pancreas Transplantation

  • Chapter
Transplantation of the Pancreas

Abstract

Type 1 diabetes mellitus is considered a chronic autoimmune disorder (see chapter 2). The autoimmune etiology is based on several independent findings, including (1) the presence of a lymphocytic infiltrate in the islets (“isletitis”), (2) the appearance of a series of autoantibodies coupled with progressive loss of insulin secretion, (3) the specificity of pancreatic β-cell destruction, and (4) recurrence of type 1 diabetes mellitus in patients transplanted with identical-twin pancreas grafts in the absence of immunosuppressive therapy. In addition, several small-animal models lend support to the autoimmune etiology of type 1 diabetes mellitus: The two most extensively studied models are the BB rat and the nonobese diabetic mouse (NOD). A detailed discussion on diabetic autoimmunity in small animals is provided in chapter 5.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hariharan S, Peddi VR, Savin VJ, et al. Recurrent and de novo renal diseases after renal transplantation: A report from the Renal Allograft Registry. Am J Kidney Dis 1998; 31: 928–931.

    Article  PubMed  CAS  Google Scholar 

  2. Ramos EL, Tisher CC. Transplantation for the nephrologist. Recurrent diseases in the kidney transplant. Am J Kidney Dis 1994; 24: 142–154.

    PubMed  CAS  Google Scholar 

  3. Cameron JS. Recurrent disease in renal allografts. Kidney Int 1993; 44: S91 - S94.

    Article  Google Scholar 

  4. Faust TW. Recurrent disease of presumed autoimmune origin. In: Maddrey WC, Schiff ER, Sorrell MF, eds. Transplantation of the Liver. Philadelphia: Lippincott Williams and Wilkins; 2001: 371–384.

    Google Scholar 

  5. Sustento-Reodica N, Ruiz P, Rogers A, et al. Recurrent Crohn’s disease in transplanted bowel. Lancet 1997; 349: 688–691.

    Article  PubMed  CAS  Google Scholar 

  6. Sutherland DER, Sibley R, Xu XZ, et al. Twin-to-twin pancreas transplantation: Reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc A Phys 1984; 97: 80–87.

    CAS  Google Scholar 

  7. Sutherland DER, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes 1989; 38: 85–87.

    PubMed  Google Scholar 

  8. Sibley RK, Sutherland DER, Goetz F, et al. Recurrent diabetes mellitus in the pancreas iso-and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Laboratory Investigation 1985; 53: 132–144.

    PubMed  CAS  Google Scholar 

  9. Santamaria P, Nakhleh RE, Sutherland DE, et al. Characterization of T lymphocytes infiltrating human pancreas allograft affected by isletitis and recurrent diabetes. Diabetes 1992; 41: 53–61.

    Article  PubMed  CAS  Google Scholar 

  10. Nakhleh RE, Gruessner RWG, Swanson PE, et al. Pancreas transplant pathology. A morphologic, immunohistochemical, and electron microscopic comparison of allogeneic grafts with rejection, syngeneic grafts, and chronic pancreatitis. Am J Surg Pathol 1991; 15: 246–256.

    Article  PubMed  CAS  Google Scholar 

  11. Tyden G, Reinholt FP, Sundkvist G, et al. Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreatic grafts. N Engl J Med 1996; 335: 860–863.

    Article  PubMed  CAS  Google Scholar 

  12. Petruzzo P, Andreelli F, McGregor B, et al. Evidence of recurrent type I diabetes following HLA-mismatched pancreas transplantation. Diabetes Metab 2000; 26: 215–218.

    PubMed  CAS  Google Scholar 

  13. Bosi E, Bottazzo GF, Secchi A, et al. Islet cell autoimmunity in type I diabetic patients after HLA-mismatched pancreas transplantation. Diabetes 1989; 38: 82–84.

    PubMed  Google Scholar 

  14. Sundkvist G, Tyden G, Karlsson FA, et al. Islet autoimmunity before and after pancreas transplantation in patients with type I diabetes mellitus. Diabetologia 1998; 41: 1532–1534.

    Article  PubMed  CAS  Google Scholar 

  15. Esmatjes E, Rodriguez-Villar C, Ricart MJ, et al. Recurrence of immunological markers for type 1 (insulin-dependent) diabetes mellitus in immunosuppressed patients after pancreas transplantation. Transplantation 1998; 66: 128–131.

    Article  PubMed  CAS  Google Scholar 

  16. Thivolet C, Abou-Mara S, Martin X, et al. Serological markers of recurrent beta cell destruction in diabetic patients undergoing pancreatic transplantation. Transplantation 2000; 69: 99–103.

    Article  PubMed  CAS  Google Scholar 

  17. Braghi S, Bonifacio E, Secchi A, et al. Modulation of humoral islet autoimmunity by pancreas allotransplantation influences allograft outcome in patients with type 1 diabetes. Diabetes 2000; 49: 218–224.

    Article  PubMed  CAS  Google Scholar 

  18. Jaeger C, Hering B, Dyrberg T, et al. Islet cell antibodies and glutamic acid decarboxylase antibodies in patients with insulin-dependent diabetes mellitus undergoing kidney and islet-afterkidney transplantation. Transplantation 1996; 62: 424–426.

    Article  PubMed  CAS  Google Scholar 

  19. Jaeger C, Hering BJ, Hatziagelaki E, et al. Glutamic acid de-carboxylase antibodies are more frequent than islet cell antibodies in islet transplanted IDDM patients and persist or occur despite immunosuppression. J Mol Med 1999; 77: 45–48.

    Article  PubMed  CAS  Google Scholar 

  20. Stegall MD, Lafferty KJ, Kam I, et al. Evidence of recurrent autoimmunity in human allogeneic islet transplantation. Transplantation 1996; 61: 1272–1274.

    Article  PubMed  CAS  Google Scholar 

  21. Eisenbarth GS, Stegall M. Islet and pancreatic transplantationautoimmunity and alloimmunity. N Engl J Med 1996; 335: 888–890.

    Article  PubMed  CAS  Google Scholar 

  22. Terasaki PI, Marchioro TL, Starzl TE. Sero-typing of human lymphocyte antigens: Preliminary trials on long-term kidney homograft survivors. In: Russell PS, Winn HJ, and Amos DB, eds. Histocompatibility Testing; Publication 1229; Washington, DC: National Academy of Sciences. 1965: 83–96.

    Google Scholar 

  23. Kissmeyer-Nielsen F, Olsen S, Peterse VP, et al. Hyperacute rejection of kidney allografts associated with pre-existing humoral antibodies against donor cells. Lancet 1966; 2: 662–665.

    Article  PubMed  CAS  Google Scholar 

  24. Williams GM, Hume DM, Hudson RP, et al. “Hyperacute” renal-homograft rejection in man. N Engl J Med 1968; 279: 61 1618.

    Google Scholar 

  25. Welsh KI, Bunce M. HLA typing, matching and crossmatching in renal transplantation. In: Morris PJ, ed. Kidney Transplantation-Principles and Practice. Philadelphia: WB Saunders Co; 2001: 135–157.

    Google Scholar 

  26. Matas AJ, Nehlsen-Cannarella S, Tellis VA, et al. Successful kidney transplantation with current-sera-negative historical sera-positive T cell crossmatch. Transplantation 1984; 37: 111–112.

    Article  PubMed  CAS  Google Scholar 

  27. Matas AJ, Humar A, Kandaswamy R, Payne WD, Gruessner RWG, Sutherland DER. Kidney and pancreas transplantation without a crossmatch in select circumstances-it can be done. Clin Transplant 2001; 15: 236–239.

    Article  PubMed  CAS  Google Scholar 

  28. Cardella CJ, Falk JA, Nicholson MJ, et al. Successful renal transplantation in patients with T-cell reactivity to donor. Lancet 1982; 2: 1240–1243.

    Article  PubMed  CAS  Google Scholar 

  29. Turka LA, Goguen JE, Carpenter CB, et al. The effect of historical crossmatches and sensitization on renal allograft survival. Transplant Proc 1989; 21: 696–697.

    PubMed  CAS  Google Scholar 

  30. Taube DH, Williams DG, Cameron JS, et al. Renal transplantation after removal and prevention of resynthesis of HLA antibodies. Lancet 1984; 1: 824–826.

    Article  PubMed  CAS  Google Scholar 

  31. Palmer A, Taube D, Welsh K, et al. Removal of anti-HLA antibodies by extracorporeal immunoadsorption to enable renal transplantation. Lancet 1989; 1 (8628): 10–12.

    Article  PubMed  CAS  Google Scholar 

  32. Esnault V, Bignon JD, Testa A, et al. Effect of protein A immunoadsorption on panel lymphocyte reactivity in hyperimmunized patients awaiting a kidney graft. Transplantation 1990; 50: 449–453.

    Article  PubMed  CAS  Google Scholar 

  33. Kupin WL, Venkat KK, Hayashi H, et al. Removal of lymphocytotoxic antibodies by pretransplant immunoadsorption therapy in highly sensitized renal transplant recipients. Transplantation 1991; 51: 324–329.

    Article  PubMed  CAS  Google Scholar 

  34. Montgomery RA, Zachary AA, Racusen LC, et al. Plasmapheresis and intravenous immune globulin provides effective rescue therapy for refractory humoral rejection and allows kidneys to be successfully transplanted into cross-match-positive recipients. Transplantation 2000; 70: 887–895.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor CJ, Smith SI, Morgan CH, et al. Selective omission of the donor cross-match before renal transplantation: Efficacy, safety, and effects on cold storage time. Transplantation 2000; 69: 719–723.

    Article  PubMed  CAS  Google Scholar 

  36. Gruessner AC. Report of the International Pancreas Transplant Registry. In: Cecka M, Terasaki PI, eds. Clinical Transplants. In press.

    Google Scholar 

  37. Kwaja K, Wijkstrom M, Gruessner A, Noreen H, Sutherland DER, Humar A, Kandaswamy R, Gruessner RWG. Pancreas transplants in crossmatch-positive recipients. Clin Transplant. In press.

    Google Scholar 

  38. Peltenburg HG, Tiebosch A, van den Berg-Loonen, et al. A positive T cell crossmatch and accelerated acute rejection of a pancreas-spleen allograft. Transplantation 1992; 53: 226–228.

    PubMed  CAS  Google Scholar 

  39. Gordon R, Iwatsuki S, Esquivel C, et al. Liver transplantation across ABO blood groups. Surgery 1986; 100: 342–348.

    PubMed  CAS  Google Scholar 

  40. Gugenheim J, Samuel D, Reynes M, et al. Liver transplantation across ABO blood group barriers. Lancet 1990; 336: 519–522.

    Article  PubMed  CAS  Google Scholar 

  41. Farges O, Kalil A, Samuel D, et al. The use of ABO-incompatible grafts in liver transplantation: A life-saving procedure in highly selected patients. Transplantation 1995; 59: 1124–1133.

    PubMed  CAS  Google Scholar 

  42. Caruana R, Zumbro G, Hoff R, et al. Successful cardiac transplantation across an ABO blood group barrier. Transplantation 1988; 46: 472–474.

    Article  PubMed  CAS  Google Scholar 

  43. Starzl TE, Marchioro TL, Holmes JH, et al. Renal homografts in patients with major donor-recipient group incompatibilities. Surgery 1964; 55: 195–200.

    PubMed  CAS  Google Scholar 

  44. Tanabe K, Takahashi K, Sonda K, et al. Long-term results of ABO-incompatible living kidney transplantation. Transplantation 1998; 65: 224–228.

    Article  PubMed  CAS  Google Scholar 

  45. Kandaswamy R, Humar A, Wijkstrom M, Eastlund T, Sutherland DER. AB O-incompatible, living unrelated, simultaneous pancreas and kidney transplant: A case report. In: Abstract Book of the 7th World Congress of the International Pancreas and Islet Association, Sydney, Australia, 1999; 69.

    Google Scholar 

  46. Brynger H, Rydberg L, Samuelsson B, et al. Renal transplanta-bon across a blood group barrier-“A2” kidneys to “O” recipients. Proc Eur Dial Transplant Assoc 1982; 19: 427–431.

    Google Scholar 

  47. Alexandre GPJ, Squifflet JP. Significance of the ABO antigen system. In: Cirelli GJ, ed. Organ Transplantation and Replacement. Philadelphia: JB Lippincott; 1988: 223–230.

    Google Scholar 

  48. Welsh KI, van Dam M, Koffman CG. Transplantation of blood group A2 kidneys into O and B recipients: The effect of pre-transplant anti-A titers on graft survival. Transplant Proc 1987; 19: 4565–4567.

    Google Scholar 

  49. Alexandre GPJ, Latinne D, Carlier M, et al. ABO-incompatibility and organ transplantation. Transplant Rev 1991; 5: 230–241.

    Article  Google Scholar 

  50. Agishi T, Takahashi K, Ota K. Comparative evaluation of immunoadsorption and double filtration plasmapheresis for removal of anti-A or -B antibody in ABO-incompatible kidney transplantation. Transplant Proc 1992; 24: 557–558.

    PubMed  CAS  Google Scholar 

  51. Mendez R, Sakhrani L, Aswad S, et al. Successful living-related ABO incompatible renal transplant using the BIOSYNSORB immunoadsorption column. Transplant Proc 1992; 24: 1738–1740.

    PubMed  CAS  Google Scholar 

  52. Slapak M, Naik RM, Lee HA. Renal transplant in patients with major donor-recipient blood group incompatibility. Transplantation 1981; 31: 4–7.

    Article  PubMed  CAS  Google Scholar 

  53. Bannet AD, McAlack RF, Raja R, et al. Experiences with known ABO-mismatched renal transplants. Transplant Proc 1987; 19: 4543–4546.

    Google Scholar 

  54. Alexandre GPJ, Squifflet JP, DeBruyere M, et al. Splenectomy as a prerequisite for successful human ABO-incompatible renal transplantation. Transplant Proc 1985; 17: 138–143.

    Google Scholar 

  55. Nelson PW, Helling TS, Shield CF, et al. Current experience with renal transplantation across the ABO barrier. Am J Surg 1992; 164: 541–545.

    Article  PubMed  CAS  Google Scholar 

  56. Sindhi R, Landmark J, Stratta RJ, Cushing K, Taylor R. Humoral graft-versus-host disease after pancreas transplantation with an AB O-compatible and Rh-nonidentical donor. Transplantation 1996; 1: 1414–1416.

    Article  Google Scholar 

  57. Knoop C, Andrien M, Antoine M, Lambermont M, et al. Severe hemolysis due to a donor anti-D antibody after heart-lung transplantation: Association with lung and blood chimerism. Am Rev Respir Dis 1993; 148: 504–506.

    PubMed  CAS  Google Scholar 

  58. Monaco AP, Wood WL. Studies on heterologous antilymphocyte serum in mice: VII. Optimal cellular antigen for induction of immunologic tolerance with ALS. Transplant Proc 1970; 2: 489–496.

    PubMed  CAS  Google Scholar 

  59. Monaco AP, Wood ML, Maki T, Madras PN, Sahyoun AI, Simpson MA. Attempt to induce unresponsiveness to human renal allografts with antilymphocyte globulin and donor-specific bone marrow. Transplant Proc 1985; 27 (1): 1312–1314.

    Google Scholar 

  60. Barber WH, Mankin JA, Laskow DA, et al. Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation 1991; 51: 70–75.

    Article  PubMed  CAS  Google Scholar 

  61. Starzl TE, Demetris AJ, Trucco M, et al. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation 1993; 55: 1272–1277.

    Article  PubMed  CAS  Google Scholar 

  62. Starzl TE, Demetris AI, Murase N, Trucco M, Thomson AW, Rao AS. The lost chord: Microchimerism and allograft survival. Immunol Today 1996; 17: 577–584.

    Article  PubMed  CAS  Google Scholar 

  63. Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatible leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: The induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999; 68: 480–484.

    Article  PubMed  CAS  Google Scholar 

  64. Butcher JA, Hariharan S, Adams MB, et al. Renal transplantation for end-stage renal disease following bone marrow transplantation: A report of six cases, with and without immunosuppression. Clin Transplant 1999; 13: 330–335.

    Article  PubMed  CAS  Google Scholar 

  65. Sayegh MH, Fine NA, Smith JL, Rennke HG, Milford EL, Tilney NL. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med 1991; 114: 954–955.

    PubMed  CAS  Google Scholar 

  66. Jacobsen N, Taaning E, Ladefoged J, Kristensen JK, Pedersen FK. Tolerance to an HLA-B, DR disparate kidney allograft after bone-marrow transplantation from same donor. Lancet 1994; 1: 800.

    Article  Google Scholar 

  67. Helg C, Chapuis B, Bolle JF, et al. Renal transplantation without immunosuppression in a host with tolerance induced by allogeneic bone marrow transplantation. Transplantation 1994; 58: 1420–1422.

    PubMed  CAS  Google Scholar 

  68. Sorof JM, Koerper MA, Portale AA, Potter D, DeSantes K, Cowan M. Renal transplantation without chronic immunosuppression after T-cell-depleted, HLA-mismatched bone marrow transplantation. Transplantation 1995; 59: 1633–1635.

    PubMed  CAS  Google Scholar 

  69. Grygotis M. Against all odds, Elly saves Rhonda’s life twice—once as bone marrow donor, later as kidney donor. Transplant News (Newslett) 1999; 9: 8–10.

    Google Scholar 

  70. Carella AM, Champlin R, Slavin S, McSweeney P, Storb R. Mini-allografts: Ongoing trials in humans. Bone Marrow Transplant 2000; 25: 345–350.

    Article  PubMed  CAS  Google Scholar 

  71. Sellers MT, Deierhoi MH, Curtis JJ, et al. Tolerance in renal transplantation after allogeneic bone marrow transplantation-6 year follow-up. Transplantation 2001; 71: 1681–1683.

    Article  PubMed  CAS  Google Scholar 

  72. Wekerle T, Sykes M. Mixed chimerism and transplantation tolerance. Annu Rev Med 2001; 52: 353–370.

    Article  PubMed  CAS  Google Scholar 

  73. Ildstad ST, Wren SM, Bluestone JA, et al. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B 10.D2-p B10). J Immunol 1986; 136: 28–33.

    PubMed  CAS  Google Scholar 

  74. I1dstad ST, Wren SM, Bluestone JA, et al. Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med 1985; 162: 231–244.

    Google Scholar 

  75. Neipp M, Exner BG, Ildstad ST. A nonlethal conditioning approach to achieve engraftment of xenogeneic rat bone marrow in mice and to induce donor-specific tolerance. Transplantation 1998; 66: 969–975.

    Article  PubMed  CAS  Google Scholar 

  76. Starzl TE, Demetris M, Murase N, Ilstad S, Ricordi C, Trucco M. Cell migration, chimerism and graft acceptance. Lancet 1992; 339: 1579–1582.

    Article  PubMed  CAS  Google Scholar 

  77. Wood K, Sachs DH. Chimerism and transplantation tolerance: Cause and effect. Immunol Today 1996; 17: 584–587.

    Article  PubMed  CAS  Google Scholar 

  78. Thomas JM, Carver FM, Foil MB. Renal allograft tolerance induced with ATG and donor bone marrow in out-bred rhesus monkeys. Transplantation 1983; 36: 104–106.

    Article  PubMed  CAS  Google Scholar 

  79. Kimikawa M, Sachs DH, Colvin RB, et al. Modifications of the conditioning regimen for achieving mixed chimerism and donor-specific tolerance in cynomolgus monkeys. Transplantation 1997; 64: 709–716.

    Article  PubMed  CAS  Google Scholar 

  80. Kawai T, Abrahamian G, Sogawa H, et al. Costimulatory blockade for induction of mixed chimerism and renal allograft tolerance in non-human primates. Transplantation 2000; 69: S370. (Abstract).

    Article  Google Scholar 

  81. Ruedi E, Sykes M, Ildstad ST, et al. Antiviral T cell competence and restriction specificity of mixed allogeneic (Pl + P2 -* Pl) irradiation chimeras. Cell Immunol 1989; 121: 185–195.

    Article  PubMed  CAS  Google Scholar 

  82. Colson YL, Li H, Boggs SS, et al. Durable mixed allogeneic chimerism and tolerance by a nonlethal radiation-based cytoreductive approach. J Immunol 1996; 157: 2820–2829.

    PubMed  CAS  Google Scholar 

  83. Sykes M, Szot GL, Swenson K, Pearson DA. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nature Med 1997; 3: 783–787.

    Article  PubMed  CAS  Google Scholar 

  84. Colson YL, Lange J, Fowler K, lldstad ST. Mechanism of co-tolerance in nonlethally conditioned mixed chimeras: Negative selection of the Vbeta T-cells receptor repertoire by both host and donor bone marrow-derived cells. Blood 1997; 88: 46014610.

    Google Scholar 

  85. Fontes P, Rao AS, Demetris AJ, et al. Bone marrow augmentation of donor-cell chimerism in kidney, liver heart and pancreas islet transplantation. Lancet 1994; 344: 151–155.

    Article  PubMed  CAS  Google Scholar 

  86. Shapiro R, Rao AS, Fontes P, et al. Combined simultaneous kidney/bone marrow transplantation. Transplantation 1995; 60: 1421–1425.

    Article  PubMed  CAS  Google Scholar 

  87. Garcia-Morales R, Carreno M, Mathew JM, et al. The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow assays in kidney transplant recipients. J Clin Invest 1997; 99: 1118–1129.

    Article  PubMed  CAS  Google Scholar 

  88. Garcia-Morales R, Carreno M, Mathew JM, et al. Continuing observations on the regulatory effects of donor-specific bone marrow cell infusions and chimerism in kidney transplant recipients. Transplantation 1998; 65: 956–965.

    Article  PubMed  CAS  Google Scholar 

  89. Miller J, Mathew JM, Garcia-Morales R, et al. The human bone marrow as an immunoregulatory organ. Transplantation 1999; 68: 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  90. Ciancio G, Miller J, Garcia-Morales R, et al. Six-year clinical effect of donor bone marrow infusions in renal transplant patients. Transplantation 2001; 71: 827–835.

    Article  PubMed  CAS  Google Scholar 

  91. Garcia-Morales R, Esquenazi V, Zucker K, et al. Assessment of the effects of cadaver donor bone marrow on kidney allograft recipient blood cell chimerism by a novel technique combining PCR and flow cytometry. Transplantation 1996; 62: 1149–1160.

    Article  PubMed  CAS  Google Scholar 

  92. Mathew JM, Garcia-Morales R, Fuller L, et al. Donor bone marrow-derived chimeric cells present in renal transplant recipients infused with donor marrow. I. Potent regulators of recipient’s antidonor immune responses. Transplantation 2000; 70: 1675–1682.

    Article  PubMed  CAS  Google Scholar 

  93. Mathew JM, Miller J. Immunoregulatory role of chimerism in clinical organ transplantation. Bone Marrow Transplant 2001; 28: 115–119.

    Article  PubMed  CAS  Google Scholar 

  94. Ricordi C, Karatzas T, Nery J, et al. High-dose donor bone marrow infusions to enhance allograft survival: The effect of timing. Transplantation 1997; 63: 7–11.

    Article  PubMed  CAS  Google Scholar 

  95. Schlitt HJ, Hundrieser J, Ringe B, Pichlmayr R. Donor-type microchimerism associated with graft rejection eight years after liver transplantation. N Engl J Med 1994; 330: 646–647.

    Article  PubMed  CAS  Google Scholar 

  96. Elwood ET, Larsen CP, Maurer DH, et al. Microchimerism and rejection in clinical transplantation. Lancet 1997; 349: 1358 1360.

    Google Scholar 

  97. McDaniel HB, Yan M, Sidner RA, Jindal RM, Sahota A. Prospective study of microchimerism in transplant recipients. Clin Transplant 1999; 13: 187–192.

    Article  PubMed  CAS  Google Scholar 

  98. Sivasai KSR, Alevy Y, Duffy B, et al. Peripheral blood microchimerism in human liver and renal transplant recipients: Rejection despite donor-specific chimerism. Transplantation 1997; 64: 427–432.

    Article  PubMed  CAS  Google Scholar 

  99. Dafoe DC, Campbell DA, Marks WH, Wilson GN, Turcotte JG. Karyotypic chimerism and rejection in a pancreaticoduodenosplenic transplant. Transplantation 1985; 40: 572–574.

    Article  PubMed  CAS  Google Scholar 

  100. Rao AS, Fontes P, Zeevi A, et al. Augmentation of chimerism in whole organ recipients by simultaneous infusion of donor bone marrow cells. Transplant Proc 1995; 27 (1): 210–212.

    PubMed  CAS  Google Scholar 

  101. Rao AS, Fontes P, Zeevi A, et al. Enhancement of donor cell chimerism in whole organ allograft recipients by adjuvant bone marrow transplantation. Transplant Proc 1995;27(6):33873388.

    Google Scholar 

  102. Zeevi A, Pavlick M, Banas R, et al. Three years of follow-up of bone marrow-augmented organ transplant recipients: The impact of donor-specific immune modulation. Transplant Proc 1997; 29: 1205–1206.

    Article  PubMed  CAS  Google Scholar 

  103. Corry RI, Chakrabarti PK, Shapiro R, et al. Simultaneous administration of adjuvant donor bone marrow in pancreas transplant recipients. Ann Surg 1999; 230: 372–381.

    Article  PubMed  CAS  Google Scholar 

  104. Burke GW, Ricordi C, Karatzas T, et al. Donor bone marrow infusion in simultaneous pancreas/kidney transplant recipients: A preliminary study. Transplant Proc 1995; 27 (6): 3121–3122.

    PubMed  CAS  Google Scholar 

  105. Burke GW, Ricordi C, Karatzas T, et al. Donor bone marrow infusion in simultaneous pancreas/kidney transplantation with OKT3 induction: Evidence for augmentation of chimerism. Transplant Proc 1997; 29: 1207–1208.

    Article  PubMed  CAS  Google Scholar 

  106. Burke GW, Ciancio G, Garcia-Morales R, et al. Higher percentage of donor CD34+ expression in peripheral blood of simultaneous pancreas/kidney/donor bone marrow versus than kidney/islet cell/donor bone marrow recipients. Transplant Proc 1998; 30: 535–536.

    Article  PubMed  CAS  Google Scholar 

  107. Burke GW, Ciancio G, Garcia-Morales R, et al. Persistence of microchimerism in recipients of donor bone marrow/simultaneous pancreas-kidney transplantation with 5-year follow-up. In: Proceedings of the Cell Transplant Society 10th Anniversary Congress; Keystone, CO, October, 2001.

    Google Scholar 

  108. Burlingham WJ, Grailer AP, Fechner JH Jr, et al. Microchimerism linked to cytotoxic T lymphocyte functional unresponsiveness (clonal anergy) in a tolerant renal transplant recipient. Transplantation 1995; 59: 1147–1155.

    PubMed  CAS  Google Scholar 

  109. Field EH. Strober S. Tolerance, mixed chimerism and protection against graft-versus-host disease after total lymphoid irradiation. Phil Trans Roy Soc Lond B 2001; 356: 739–748.

    Article  CAS  Google Scholar 

  110. Strober S, Benike C, Krishnaswamy S, Engleman EG, Grumet FC. Clinical transplantation tolerance twelve years after prospective withdrawal of immunosuppressive drugs: Studies of chimerism and anti-donor reactivity. Transplantation 2000; 69: 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  111. VanBuskirk AM, et al. Human allograft acceptance associated with immune regulation. J Clin Invest 2000; 106: 145–155.

    Article  PubMed  CAS  Google Scholar 

  112. Carrodeguas L, Orosz CG, Waldman WJ, Sedmak DD, Adams PW, VanBuskirk AM. Trans vivo analysis of human delayed-type hypersensitivity reactivity. Human Immunol 1999; 60: 640–651.

    Article  CAS  Google Scholar 

  113. Burke GW, Ciancio G, Cirocco R, Markou M, Coker D, Roth D, Nery J, Esquenazi V, Miller J. Association of IL-10 with rejection-sparing effect in septic kidney transplant recipients. Transplantation 1996; 61: 1114–1116.

    Article  PubMed  CAS  Google Scholar 

  114. Chan SY, DeBruyne LA, Goodman RE, Eichwald EJ, Bishop DK. In vivo depletion of CD8+ T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection. Transplantation 1995; 59: 1155–1161.

    PubMed  CAS  Google Scholar 

  115. Yu XZ, Carpenter P, Anasetti C. Advances in transplantation tolerance. Lancet 2001; 357: 1959–1963.

    Article  PubMed  CAS  Google Scholar 

  116. Bromberg JS, Murphy B. Routes to allograft survival. J Clin Invest 2001; 107: 797–798.

    Article  PubMed  CAS  Google Scholar 

  117. Sayegh MH, et al. CD28–B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. J Exp Med 1995; 181: 1869–1874.

    Article  PubMed  CAS  Google Scholar 

  118. Waaga AM, Gasser M, Kist-van Holthe JE, et al. Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. J Clin Invest 2001; 107: 909–916.

    Article  PubMed  CAS  Google Scholar 

  119. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434–438.

    Article  PubMed  CAS  Google Scholar 

  120. Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997; 94: 8789–8794.

    Article  PubMed  CAS  Google Scholar 

  121. Bingaman AW, Ha J, Durham MM, et al. Analysis of the CD40 and CD28 pathways on alloimmune responses by CD4+ T cells in vivo. Transplantation 2001; 72: 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  122. Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 2001; 72: 377–384.

    Article  PubMed  CAS  Google Scholar 

  123. Kelso A. Th1 and Th2 subsets: Paradigms lost? Immunol Today 1995; 16: 374–379.

    Article  PubMed  CAS  Google Scholar 

  124. Rothstein DM, Livak MFA, Kishimoto K, et al. Targeting signal 1 through CD45RB synergizes with CD40 ligand blockade and promotes long term engraftment and tolerance in stringent transplant models. J Immunol 2001; 166: 322–329.

    Google Scholar 

  125. Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 2001; 193: 1311 1317.

    Google Scholar 

  126. Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 2001; 167: 188–195.

    PubMed  CAS  Google Scholar 

  127. Zhou J, Carr RI, Liwski RS, Stadnyk AW, Lee TDG. Oral exposure to alloantigen generates intragraft CD8+ regulatory cells. J Immunol 2001; 167: 107–113.

    PubMed  CAS  Google Scholar 

  128. Jonuleit J, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogenic immature human dendritic cells. J Exp Med 2000; 192: 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  129. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–238.

    Article  PubMed  CAS  Google Scholar 

  130. Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Med 2000; 6: 1348–1354.

    Article  PubMed  CAS  Google Scholar 

  131. Blom B, Ho S, Antonenko S, Liu YJ. Generation of interferon a-producing pre-dendritic cell (DC) from human CD34+ hematopoietic stem cells. J Exp Med 2000; 192: 1785–1795.

    Article  PubMed  CAS  Google Scholar 

  132. Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC) 2 but not into pre-DC 1: Evidence for a lymphoid origin of pre-DC2. J Exp Med 2000; 192: 1775 1783.

    Google Scholar 

  133. Li XC, Demirci G, Lacraz-Ferrari S, et al. IL-15 and IL-2: A matter of life and death for T cells in vivo. Nature Med 2001; 7: 114–118.

    Article  PubMed  CAS  Google Scholar 

  134. Ensminger SM, Spriewald BM, Sorensen HV, et al. Critical role for IL-4 in the development of transplant arteriosclerosis in the absence of CD40–CD154 costimulation J Immunol 2001; 167: 532–541.

    CAS  Google Scholar 

  135. Hancock WW, Gao W, Csizmadia V, Faia KL, Shemmeri N, Luster AD. Donor-derived IP-10 initiates development of acute allograft rejection. J Exp Med 2001; 193: 975–980.

    Article  PubMed  CAS  Google Scholar 

  136. Gao W, Faia KL, Csizmadia V, et al. Beneficial effects of targeting CCR5 in allograft recipients. Transplantation 2001; 72: 1199–1205.

    Article  PubMed  CAS  Google Scholar 

  137. Nelson PJ, Krensky AM. Chemokines and allograft rejection: Narrowing the list of suspects. Transplantation 2001; 72: 1195 1197.

    Google Scholar 

  138. Li Y, et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral tolerance. Nature Med 1999; 5: 1298–1302.

    Article  PubMed  CAS  Google Scholar 

  139. Fecteau S, Basadonna GP, Freitas A, et al. CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nature Immunol 2001; 2: 58–63.

    Article  CAS  Google Scholar 

  140. Seghal SN. Rapamune (RAPA, rapamycin, sirolimus): Mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 1998; 31: 335.

    Article  Google Scholar 

  141. Kahan BD, Camardo JS. Rapamycin: Clinical results and future opportunities. Transplantation 2001; 72: 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  142. Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nature Med 1999; 5: 1303–1307.

    Article  PubMed  CAS  Google Scholar 

  143. Hausen B, Klupp J, Hook LE, et al. Combined administration of low dose sirolimus and novel humanized monoclonals against the B7.1 and B7.2 epitopes improve graft outcome following renal transplantation in cynomolgus monkeys. In: Proceedings of the XVIII International Congress of the Transplantation Society; 2000. Abstract 0531: 198.

    Google Scholar 

  144. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing CTLA4. J Exp Med 2000; 192: 303–310.

    Article  PubMed  CAS  Google Scholar 

  145. Kronenwett R, Martin S, Haas R. The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells 2000; 18: 320–330.

    Article  PubMed  CAS  Google Scholar 

  146. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 1994; 84: 2436–2446.

    PubMed  CAS  Google Scholar 

  147. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001; 106: 259–262.

    Article  PubMed  CAS  Google Scholar 

  148. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001; 106: 263–266.

    Article  PubMed  CAS  Google Scholar 

  149. Takayama T, Tahara H, Thomson AW. Differential effects of myeloid dendritic cells retrovirally transduced to express mammalian or viral interleukin-10 on cytotoxic T lymphocyte and natural killer cell functions and resistance to tumor growth. Transplantation 2001; 71: 1334–1340.

    Article  PubMed  CAS  Google Scholar 

  150. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal cells; Nature, biology, and potential applications. Stem Cells 2001; 19: 180–192.

    Article  PubMed  CAS  Google Scholar 

  151. Lan F, Zeng D, Higuchi M, Huie P, Higgins JP, Strober S. Predominance of NK1.1+TCRaß+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graftversus-host disease: “Natural suppressor” cells. J Immunol 2001; 167: 2087–2096.

    PubMed  CAS  Google Scholar 

  152. Waller EK, Ship AM, Mittelstaedt S, et al. Irradiated donor leukocytes promote engraftment of allogeneic bone marrow in major histocompatibility complex mismatched recipients without causing graft-versus-host disease. Blood 1999; 94: 3222–3233.

    PubMed  CAS  Google Scholar 

  153. Waller EK, Rosenthal H, Jones TW, et al. Larger numbers of CD4 bright dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 2001; 97: 2948–2956.

    Article  PubMed  CAS  Google Scholar 

  154. Wekerle T, Kurtz J, Ito H, et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nature Med 2000; 6: 464–469.

    Article  PubMed  CAS  Google Scholar 

  155. Lowdell MW, Craston R, Ray N, Koh M, Galatowicz G, Prentice HG. The effect of T cell depletion with Campath-1 M on immune reconstitution after chemotherapy and allogeneic bone marrow transplant as treatment for leukaemia. Bone Marrow Transplant 1998; 21: 679–685.

    Article  PubMed  CAS  Google Scholar 

  156. Teshima T, Ferrara JLM. Pathogenesis and prevention of graftversus-host disease. Curr Opin Organ Transplant 2001; 6: 265271.

    Google Scholar 

  157. Finke J. Reduced-intensity conditioning in allogeneic transplantation for the elderly (>55 years) with matched related or unrelated donors. Curr Opin Organ Transplant 2001; 6: 260–264.

    Article  Google Scholar 

  158. Childs R, Clave E, Contentin N, et al. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: Full donor T-cell chimerism precedes alloimmune responses. Blood 1999; 94: 3234–3241.

    PubMed  CAS  Google Scholar 

  159. Kamel T, Callery MP, Flye MW. Pretransplant portal venous administration of donor antigen and portal venous allograft drainage synergistically prolong rat cardiac allograft survival. Surgery 1990; 108: 415–422.

    Google Scholar 

  160. Qian JH, Hashimoto T, Fujiwara H, Hamaoka T. Studies on the induction of tolerance to alloantigens. I. The abrogation of potentials for delayed-type-hypersensitivity responses to alloantigens by portal venous inoculation with allogeneic cells. J Immunol 1985; 134: 3656–3661.

    PubMed  CAS  Google Scholar 

  161. Sonntag K-C, Emery DW, Yasumoto A, et al. Tolerance to solid organ transplants through transfer of MHC class II genes. J Clin Invest 2001; 107: 65–71.

    Article  PubMed  CAS  Google Scholar 

  162. Rosengard BR, Turka LA. The tolerant recipient: Looking good in someone else’s genes. J Clin Invest 2001;107:33–34. Editorial.

    Google Scholar 

  163. Waldmann H, Cobbold S. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu Rev Immunol 1998; 16: 619–644.

    Article  PubMed  CAS  Google Scholar 

  164. Suberbielle C, Caillat-Zucman S, Legendre C, et al. Peripheral microchimerism in long-term cadaveric-kidney allograft recipients. Lancet 1994; 343: 1468–1469.

    Article  PubMed  CAS  Google Scholar 

  165. Starzl TE, Demetris AJ, Murase N, Trucco M, Thomson AW, Rao AS. Response to Wood and Sachs. Immunol Today 1996; 17: 588.

    CAS  Google Scholar 

  166. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: Entity or function? Cell 2001; 105: 829–841.

    Article  PubMed  CAS  Google Scholar 

  167. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001; 19: 193–204.

    Article  PubMed  CAS  Google Scholar 

  168. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patints with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230–238.

    Article  PubMed  CAS  Google Scholar 

  169. Oluwole 00, Depaz HA, Gopinathan R, et al. Indirect allorecognition in acquired thymic tolerance. Induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 2001; 50: 1546–1552.

    Google Scholar 

  170. Ryan EA, Lakey JRT, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001; 50: 710–719.

    Article  PubMed  CAS  Google Scholar 

  171. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–706.

    Article  PubMed  CAS  Google Scholar 

  172. Thomas F, Wu J, Contreras JL, et al. A tripartite anoikis-like mechanism causes early isolated islet apoptosis. Surgery 2001; 130: 333–338.

    Article  PubMed  CAS  Google Scholar 

  173. Contreras JL, Bilbao G, Smyth C, et al. Gene transfer of the Bc1–2 gene confers cytoprotection to isolated adult porcine pancreatic islets exposed to xenoreactive antibodies and complement. Surgery 2001; 130: 166–174.

    Article  PubMed  CAS  Google Scholar 

  174. Contreras JL, Bilbao G, Smyth CA, et al. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bc1–2 gene. Transplantation 2001; 71: 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  175. Kawai T, Sogawa H, Koulmanda M, et al. Long-term islet allograft function in the absence of chronic immunosuppression: A case report of a nonhuman primate previously made tolerant to a renal allograft from the same donor. Transplantation 2001; 72: 351–354.

    Article  PubMed  CAS  Google Scholar 

  176. Monaco AP. Clinical kidney transplantation in 1984. Transplant Proc 1985; 17 (1): 5–12.

    Google Scholar 

  177. Burke GW, Sutherland DER, Najarian JS. Vascularized organ transplantation: Kidney, liver and pancreas. In: Nora PF, ed. Operative Surgery, Principles and Techniques. 3rd ed. Philadelphia, PA: W.B. Saunders Co. 1990: 1309–1362.

    Google Scholar 

  178. Starzl TE, Rao AS, Murase N, et al. Will xenotransplantation ever be feasible? J Am Coll Surg 1998; 186: 383–387.

    Article  PubMed  CAS  Google Scholar 

  179. Burk GW, Ciancio G, Figueiro J, et al. Can acute rejection be prevented in SPK transplantation? Transplant Proc 2002; 34: 1913–1914.

    Article  Google Scholar 

  180. Bachar-Lustig E, Wei Li H, Gur H, Krauthgamer R, Marcus H, Reisner Y. Induction of donor-type chimerism and transplantation tolerance across major histocompatibility barriers in sub-lethally irradiated mice by sca-1+Lin— bone marrow progenitor cells: Synergism with non-alloreactive (host x donor)Fi T cells. Blood 1999; 94: 3212–3221.

    PubMed  CAS  Google Scholar 

  181. Rachamim N, Gan J, Segall H, et al. Tolerance induction by “megadose” hematopoietic transplants: Donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation 1998; 65: 1386.

    Article  PubMed  CAS  Google Scholar 

  182. Domen J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, kitl/ c-kid signaling the other. J Exp Med 2000; 192: 1707–1718.

    Article  PubMed  CAS  Google Scholar 

  183. Starzl TE. The birth of clinical organ transplantation. J Am Coll Surg 2001; 192: 431–446.

    Article  PubMed  CAS  Google Scholar 

  184. Burdick JF, Vogelsang GB, Smith WJ, et al. Severe graft-versus-host disease in a liver transplant recipient. N Engl J Med 1988; 318: 689–691.

    Article  PubMed  CAS  Google Scholar 

  185. Roberts JP, Ascher NL, Lake J, et al. Graft vs. host disease in a liver transplant recipient. Hepatology 1991; 14 (2): 274–281.

    Article  PubMed  CAS  Google Scholar 

  186. Triulzi DJ, Nalesnik MA. Microchimerism, GVHD, and tolerance in solid organ transplantation. Transfusion 2001; 41: 419426.

    Google Scholar 

  187. Reyes J, Todo S, Green M, et al. Graft-versus-host disease after liver and small bowel transplantation in a child. Clin Transplant 1997; 11: 345–348.

    PubMed  CAS  Google Scholar 

  188. Abu-Elmagd K, Reyes J, Todo S, et al. Clinical intestinal transplantation: New perspectives and immunologic considerations. J Am Coll Surg 1998; 186: 512–527.

    Article  PubMed  CAS  Google Scholar 

  189. Ohtsuka Y, Sakemia T, Ichigi Y, et al. A case of chronic graftversus-host disease following living-related donor kidney transplantation. Nephron 1998; 78: 215–217.

    Article  PubMed  CAS  Google Scholar 

  190. Sliman GA, Beschorner WE, Baughman KL, et al. Graft-versushost-like disease in a heart allograft recipient. Transplantation 1988; 46: 93–98.

    Article  Google Scholar 

  191. Billingham RE. The biology of graft-versus-host reactions. Harvey Lect 1966; 62: 21–78.

    PubMed  Google Scholar 

  192. Hanaway MJ, Buell JF, Musat AI, et al. Graft-versus-host disease in solid organ transplantation. Graft 2001; 4: 205–208.

    Article  Google Scholar 

  193. Andany MA, Martinez W, Arnal F, Yebra T, et al. Transfusion-associated graft-versus-host disease in a renal transplant recipient. Nephrol Dial Transplant 1994; 9: 196–198.

    Google Scholar 

  194. Herman JG, Beschorner WE, Baughman KL, et al. Pseudo graftversus-host disease in heart and heart—lung recipients. Transplantation 1988; 46: 93–98.

    Article  PubMed  CAS  Google Scholar 

  195. Starzl TE, Shaw BW, Nalesnik MA, et al. Pancreaticoduodenal transplantation in humans. Surg Gynecol Obstet 1984; 159: 265272.

    Google Scholar 

  196. Deierhoi MH, Sollinger HW, Bozdech MJ, et al. Lethal graftversus-host disease in a recipient of a pancreas–spleen transplant. Transplantation 1986; 41: 544–546.

    Article  PubMed  CAS  Google Scholar 

  197. Corry RJ, Schulak JA, Gonwa TA. Surgical treatment of diabetic nephropathy with simultaneous pancreatic, duodenal, and renal transplantation. Surg Gynecol Obstet 1986; 162: 547–555.

    PubMed  CAS  Google Scholar 

  198. Booster MH, Wijnen RMH, Van Hooff JP, et al. The role of the spleen in pancreas transplantation. Transplantation 1993; 56: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  199. Bitter-Suermann H, Säve-Söderbergh J. The course of pancreas allografts in rats conditioned by spleen allografts. Transplantation 1978; 26: 28.

    Article  PubMed  CAS  Google Scholar 

  200. Squifflet JP, Sutherland DER, Florack G, Najarian JS. The course of combined pancreas and spleen allografts in rats. Transplantation 1982; 34: 302.

    Article  PubMed  CAS  Google Scholar 

  201. Gosling DC, Digard NJ, Harris KR, Slapak M. The effect of the spleen on pancreatic rejection in the rat. Transplantation 1987; 43: 742.

    Article  PubMed  CAS  Google Scholar 

  202. Schulak JA, Sharp WJ. Graft irradiation abrogates graft-versus host disease in combined pancreas–spleen transplantation. J Surg Res 1986; 40: 326–331.

    Article  PubMed  CAS  Google Scholar 

  203. Schulak JA, Engelstad KR. Immunologic consequences of combined pancreas–spleen transplantation in the rat. J Surg Res 1989; 47: 52–58.

    Article  PubMed  CAS  Google Scholar 

  204. Dafoe DC, Campbell DA Jr. The effect of irradiation of the donor spleen on rejection of porcine pancreaticoduodenosplenic allografts. Transplantation 1986; 42: 686–687.

    Article  PubMed  CAS  Google Scholar 

  205. Pirenne J, D’ Silva M, Nakhleh RE, et al. Pancreas induces graftvs-host disease when transplanted en bloc with liver and small bowel. Transplant Proc 1992; 24: 915–917.

    PubMed  CAS  Google Scholar 

  206. Kobayashi E, Kamada N, Enosawa S, et al. Comparison of potentiality to induce graft-versus-host reaction with small bowel, pancreas/spleen, and liver transplantation in the rat. Clin Exp Immunol 1993; 92: 527–531.

    Article  PubMed  CAS  Google Scholar 

  207. Kimball P, Ham J, Eisenberg M, et al. Lethal graft-versus-host disease after simultaneous kidney–pancreas transplantation. Transplantation 1997; 63: 1685–1688.

    Article  PubMed  CAS  Google Scholar 

  208. Wijkstrom M, Sutherland DER, Paraskevas S, Humar A, Gruessner RWG, Kandaswamy R. Graft-versus-host disease in pancreas transplantation—rare yet lethal. Acta Austriaca 2001; 33 (S174): 7.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruessner, R.W.G., Burke, G.W., Ciancio, G., García-Morales, R., Miller, J. (2004). Immunology in Pancreas Transplantation. In: Gruessner, R.W.G., Sutherland, D.E.R. (eds) Transplantation of the Pancreas. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4371-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4371-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1830-7

  • Online ISBN: 978-1-4757-4371-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics