Skip to main content

Plasticity of Binaural Systems

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 23))

Abstract

The ability to localize a sound source in space relies on the detection and interpretation of spatial cues that arise from the interaction between sound waves and the head and external ears. The dominant cues for localization in the horizontal dimension are binaural cues: interaural time differences (ITDs) and interaural level differences (ILDs). Spectral localization cues are generated by the head and external ears and are utilized for resolving front—back confusion, localization in the vertical plane, and for localization using one ear alone (see Wightman and Kistler 1997a). To localize sound sources accurately and unambiguously, the central auditory system (CAS) must extract, process, and combine information over different frequency channels and from both ears to form an internal representation of these cues. Acoustical measurements in humans and other animals have shown that the spatial cue values available can vary quite markedly from one individual to another. The relationship between the cue values and sound location must therefore be learned on the basis of experience. Moreover, as the head grows, the monaural and binaural cue values that correspond to particular directions in space will change. The developing CAS must therefore adjust to the changing cues to maintain accurate localization. Plasticity, particularly of the pathways responsible for binaural processing, is thus a necessary requirement for the retention of normal function through the period of head growth (up to about 12 years in humans; see Clifton 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuler RA (2000) Molecular mechanisms in central auditory function and plasticity. Hear Res 147: 1–302.

    Article  Google Scholar 

  • Ashmead DH, Wall RS, Ebinger KA, Eaton SB, Snook-Hill MM, Yang X (1998) Spatial hearing in children with visual disabilities. Perception 27: 105–122.

    Article  PubMed  CAS  Google Scholar 

  • Batkin S, Groth H, Watson JR, Ansberry M (1970) Effects of auditory deprivation on the development of auditory sensitivity in adult rats. EEG Clin Neurophysiol 28: 351359.

    Google Scholar 

  • Batra R, Kuwada S, Stanford TR (1993) High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. J Neurophysiol 70: 64–80.

    PubMed  CAS  Google Scholar 

  • Bauer RW, Matuzsa JL, Blackmer RF (1966) Noise localization after unilateral attenuation. J Acoust Soc Am 40: 441–444.

    Article  Google Scholar 

  • Beggs WD, Foreman DL (1980) Sound localization and early binaural experience in the deaf. Br J Audiol 14: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Bermingham-McDonogh O, Rubel EW (2003) Hair cell regeneration: winging our way towards a sound future. Curr Opin Neurobiol 13: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Bilecen D, Seifritz E, Radii EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54: 765–767.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Cooper GF (1970) Development of the brain depends on the visual environment. Nature 228: 477–478.

    Article  PubMed  CAS  Google Scholar 

  • Born DE, Rubel EW (1988) Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8: 901–919.

    PubMed  CAS  Google Scholar 

  • Born DE, Durham D, Rubel EW (1991) Afferent influences on brain stem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557: 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Brainard MS, Knudsen EI (1993) Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J Neurosci 13: 4589–4608.

    PubMed  CAS  Google Scholar 

  • Brainard MS, Knudsen EI (1995) Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl. J Neurophysiol 73: 595–614.

    PubMed  CAS  Google Scholar 

  • Brainard MS, Knudsen EI (1998) Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J Neurosci 18: 3929–3942.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Orman SS, Coleman JR, Chan JCK, Phillips DP (1985) Binaural interactions in cortical area AI of cats reared with unilateral atresia of the external ear canal. Hear Res 20: 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Butler RA (1987) An analysis of the monaural displacement of sound in space. Percept Psychophys 41: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Byrne D, Noble W, LePage B (1992) Effects of long-term bilateral and unilateral fitting of different hearing aid types on the ability to locate sounds. J Am Acad Audiol 3: 369–382.

    PubMed  CAS  Google Scholar 

  • Calford MB, Rajan R, Irvine DRF (1993) Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience 55: 953–964.

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA, Brammer MJ, Iversen SD (1998) Crossmodal identification. Trends Cogn Sci 2: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Cant NB (1991) Projections to the lateral and medial superior olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 99–120.

    Google Scholar 

  • Cant NB, Gaston KC (1986) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212: 313–326.

    Article  Google Scholar 

  • Carlile S, King AJ (1994) Monaural and binaural spectrum level cues in the ferret: acoustics and the neural representation of auditory space. J Neurophysiol 71: 785–801.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10: 2363–2372.

    PubMed  CAS  Google Scholar 

  • Clarey JC, Barone P, Imig TJ (1992) Physiology of the thalamus and cortex. In: Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 232–334.

    Chapter  Google Scholar 

  • Clements M, Kelly JB (1978) Auditory spatial responses of young guinea pigs (Cavia porcellus) during and after ear blocking. J Comp Physiol Psychol 92:31 41.

    Google Scholar 

  • Clerici WJ, Coleman JR (1986) Resting and high-frequency evoked 2-deoxyglucose uptake in the rat inferior colliculus: developmental changes and effects of short-term conduction blockade. Brain Res 392: 127–137.

    PubMed  CAS  Google Scholar 

  • Clifton RK (1992) The development of spatial hearing in human infants. In: Werner LA, Rubel EW (eds) Developmental Psychoacoustics. Washington DC: American Psychological Association, pp. 135–157.

    Google Scholar 

  • Clopton BM, Silverman MS (1977) Plasticity of binaural interaction. II. Critical period and changes in midline response. J Neurophysiol 40: 1275–1280.

    Google Scholar 

  • Clopton BM, Silverman MS (1978) Changes in latency and duration of neural responding following developmental auditory deprivation. Exp Brain Res 32: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Knudsen EI (1999) Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci 22: 128–135.

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR, O’Connor P (1979) Effects of monaural and binaural sound deprivation on cell development in the anteroventral cochlear nucleus of rats. Exp Neurol 64: 553–566.

    Article  PubMed  CAS  Google Scholar 

  • Conlee JW, Parks TN, Romero C, Creel DJ (1984) Auditory brain stem anomalies in albino cats: II. Neuronal atrophy in the superior olive. J Comp Neurol 225: 141148.

    Google Scholar 

  • Cook RD, Hung TY, Miller RL, Smith DW, Tucci DL (2002) Effects of conductive hearing loss on auditory nerve activity in gerbil. Hear Res 164: 127–137.

    Article  PubMed  Google Scholar 

  • Cotanche DA (1999) Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurootol 4: 271–285.

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith C, Gilbert CD (1994) Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368: 737–740.

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith C, Gilbert CD (1995) Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci 15: 1631–1647.

    PubMed  CAS  Google Scholar 

  • DeBello WM, Feldman DE, Knudsen EI (2001) Adaptive axonal remodeling in the midbrain auditory space map. J Neurosci 21: 3161–3174.

    Google Scholar 

  • Deitch JS, Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229: 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Deitch JS, Rubel EW (1989a) Rapid changes in ultrastructure during deafferentationinduced dendritic atrophy. J Comp Neurol 281: 234–258.

    Article  PubMed  CAS  Google Scholar 

  • Deitch JS, Rubel EW (1989b) Changes in neuronal cell bodies in N. laminaris during deafferentation-induced dendritic atrophy. J Comp Neurol 281: 259–268.

    CAS  Google Scholar 

  • Dodson HC, Bannister LH, Douek EE (1994) Effects of unilateral deafening on the cochlear nucleus of the guinea pig at different ages. Dev Brain Res 80: 261–267.

    Article  CAS  Google Scholar 

  • Dooling RI, Popper AN, Fay RR, eds (2000) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag.

    Google Scholar 

  • Doubell TP, Baron J, Skaliora I, King Ai (2000) Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information. Eur J Neurosci 12: 4290–4308.

    PubMed  CAS  Google Scholar 

  • Doubell TP, Baron J, Skaliora I, King AJ (2003) Functional connectivity between the superficial and deeper layers of the superior colliculus: implications for sensorimotor integration. J Neurosci 23: 6596–6607.

    PubMed  Google Scholar 

  • Doyle WJ, Webster DB (1991) Neonatal conductive hearing loss does not compromise brain stem auditory function and structure in rhesus monkeys. Hear Res 54: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Driver J, Spence C (1998) Attention and the crossmodal construction of space. Trends Cogn Sci 2: 254–262.

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Durlach NI, Thompson CL, Colburn HS (1981) Binaural interaction of impaired listeners. A review of past research. Audiology 20: 181–211.

    Google Scholar 

  • Dyson SE, Warton SS, Cockman B (1991) Volumetric and histological changes in the cochlear nuclei of visually deprived rats: a possible morphological basis for intermodal sensory compensation. J Comp Neurol 307: 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Feldman DE, Knudsen EI (1997) An anatomical basis for visual calibration of the auditory space map in the barn owl’s midbrain. J Neurosci 17: 6820–6837.

    PubMed  CAS  Google Scholar 

  • Feldman DE, Knudsen EI (1998a) Pharmacological specialization of learned auditory responses in the inferior colliculus of the barn owl. J Neurosci 18: 3073–3087.

    PubMed  CAS  Google Scholar 

  • Feldman DE, Knudsen EI (1998b) Experience-dependent plasticity and the maturation of glutamatergic synapses. Neuron 20: 1067–1071.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189: 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Florentine M (1976) Relation between lateralization and loudness in asymmetrical hearing losses. J Am Audiol Soc 1: 243–251.

    PubMed  CAS  Google Scholar 

  • Gabriel KJ, Koehnke J, Colbum HS (1992) Frequency dependence of binaural perfor- mance in listeners with impaired binaural hearing. J Acoust Soc Am 91: 336–347.

    Article  PubMed  CAS  Google Scholar 

  • Gabriele ML, Brunso-Bechtold JK, Henkel CK (2000) Plasticity in the development of afferent patterns in the inferior colliculus of the rat after unilateral cochlear ablation. J Neurosci 20: 6939–6949.

    PubMed  CAS  Google Scholar 

  • Gatehouse S (1992) The time course and magnitude of perceptual acclimatization to frequency responses: evidence from monaural fitting of hearing aids. J Acoust Soc Am 92: 1258–1268.

    Article  PubMed  CAS  Google Scholar 

  • Gelfand SA, Silman S, Ross L (1987) Long-term effects of monaural, binaural and no amplification in subjects with bilateral hearing loss. Scand Audiol 16: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics Neuron 9: 1–13.

    CAS  Google Scholar 

  • Gilbert CD (1993) Rapid dynamic changes in adult cerebral cortex. Curr Opin Neurobiol 3: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (1999) Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls. Neurophysiol 82: 21972209.

    Google Scholar 

  • Gold JI, Knudsen EI (2000a) Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls. J Neurosci 20: 862–877.

    PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (2000b) A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl’s inferior colliculus. J Neurosci 20: 3469–3486.

    PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (2001) Adaptive adjustment of connectivity in the inferior colliculus revealed by focal pharmacological inactivation. J Neurophysiol 85: 1575–1584.

    PubMed  CAS  Google Scholar 

  • Gravel JS, Wallace IF (1992) Listening and language at 4 years of age: effects of early otitis media. J Speech Hear Res 35: 588–595.

    PubMed  CAS  Google Scholar 

  • Gravel JS, Wallace IF, Ruben RI (1996) Auditory consequences of early mild hearing loss associated with otitis media. Acta Otolaryngol 116: 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1988) Competition in the development of the visual pathways. In: Parnavelas JG, Stern CD, Stirling RV (eds), The Making of the Nervous System. New York: Oxford University Press, pp. 356–379.

    Google Scholar 

  • Gutfreund Y, Zheng W, Knudsen EI (2002) Gated visual input to the central auditory system. Science 297: 1556–1559.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten L, Malmfors T, Norrlin ML (1966) Growth alteration in the auditory cortex of visually deprived mice. J Comp Neurol 126: 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Hafidi A, Sanes DH, Hillman DE (1995) Regeneration of the auditory midbrain intercommissural projection in organotypic culture. J Neurosci 15: 1298–1307.

    PubMed  CAS  Google Scholar 

  • Haggard MP, Hughes EA (1991) Screening Children’s Hearing: A Review of the Literature and the Implications for Otitis Media. London: HMSO.

    Google Scholar 

  • Haggard MP, Birkin JA, Browning GG, Gatehouse S, Lewis S (1994) Behavior problems in otitis media. Pediatr Infect Dis J 13: S43–50.

    Article  PubMed  CAS  Google Scholar 

  • Hall JW, Derlacki EL (1986) Effect of conductive hearing loss and middle ear surgery on binaural hearing. Ann Otol Rhinol Laryngol 95: 525–530.

    PubMed  Google Scholar 

  • Hall JW, Grose JH (1993) Short-term and long-term effects on the masking level difference following middle ear surgery. J Am Acad Audiol 4: 307–312.

    PubMed  Google Scholar 

  • Hall JW, Grose JH, Pillsbury HC (1995) Long-term effects of chronic otitis media on binaural hearing in children. Arch Otolaryngol Head Neck Surg 121: 847–852.

    Article  PubMed  Google Scholar 

  • Hall JW, Grose JH, Dev MB, Drake AF, Pillsbury HC (1998) The effect of otitis media with effusion on complex masking tasks in children. Arch Otolaryngol Head Neck Surg 124: 892–896.

    PubMed  Google Scholar 

  • Hartley DEH, Moore DR (2003) Effects of conductive hearing loss on temporal aspects of sound transmission through the ear. Hear Res 177: 53–60.

    Article  PubMed  Google Scholar 

  • Hartline PH, Pandey Vimal RL, King M, Kurylo DD, Northmore DPM (1995) Effects of eye position on auditory localization and neural representation of space in superior colliculus of cats. Exp Brain Res 104: 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Hasenstab MS (1987) Language Learning and Otitis Media. London: Taylor and Francis. Hashisaki GT, Rubel EW (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283: 465–473.

    Google Scholar 

  • Häusler R, Colburn S, Man E (1983) Sound localization in subjects with impaired hearing. Acta Otolaryngol (Stockh) (Suppl) 400: 1–62.

    Article  Google Scholar 

  • Heffner RS, Koay G, Heffner HE (1996) Sound localization in chinchillas, III: Effect of pinna removal. Hear Res 99: 13–21.

    Google Scholar 

  • Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlea removal on 2deoxyglucose patterns in the chick auditory system. J Comp Neurol 252: 279–301.

    Article  PubMed  CAS  Google Scholar 

  • Held R (1955) Shifts in binaural localization after prolonged exposure to atypical combinations of stimuli. Am J Psychol 68: 526–548.

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S (1992) Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357: 686–689.

    Article  PubMed  CAS  Google Scholar 

  • Hofman PM, Van Riswick JGA, Van Opstal JA (1998) Relearning sound localization with new ears. Nature Neurosci 1: 417–421.

    Article  PubMed  CAS  Google Scholar 

  • Hogan SC, Moore DR (2003) Impaired binaural hearing in children produced by a threshold level of middle ear disease. J Assoc Res Otolaryngol 4: 123–129.

    Article  PubMed  Google Scholar 

  • Hogan SC, Meyer SE, Moore DR (1996) Binaural unmasking returns to normal in teenagers who had otitis media in infancy. Audiol Neurootol 1: 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Hogan SC, Stratford KJ, Moore DR (1997) Duration and recurrence of otitis media with effusion in children from birth to 3 years: prospective study using monthly otoscopy and tympanometry. Bri Med J 314: 350–353.

    Article  CAS  Google Scholar 

  • Hood JD (1984) Speech discrimination in bilateral and unilateral hearing loss due to Meniere’s disease. Br J Audiol 18: 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28: 1041–1059.

    PubMed  CAS  Google Scholar 

  • Huber F (1987) Plasticity in the auditory system of crickets: phonotaxis with one ear and neuronal reorganization within the auditory pathway. J Comp Physiol A 161: 583604.

    Google Scholar 

  • Hyde PS, Knudsen EI (2002) The optic tectum controls visually guided adaptive plasticity in the owl’s auditory space map. Nature 415: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. Progress in Sensory Physiology, Vol. 7 ( Ottoson D, ed-in-chief). Berlin: Springer-Verlag.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brain stem. In: Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 153–231.

    Chapter  Google Scholar 

  • Irvine DRF, Rajan R (1995) Plasticity in the mature auditory system. In: Manley GA, Klump GM, Köppl C et al. (eds), Advances in Hearing Research. Singapore: World Scientific.

    Google Scholar 

  • Izraeli R, Koay G, Lamish M, Heicklen-Klein AJ, Heffner HE, Heffner RS, Wollberg Z (2002) Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour. Eur J Neurosci 15: 693–712.

    Article  PubMed  Google Scholar 

  • Jackson H, Parks TN (1988) Induction of aberrant functional afferents to the chick cochlear nucleus. J Comp Neurol 271: 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Jay MF, Sparks DL (1984) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309: 345–347.

    Article  PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization J Comp Physiol Psychol 41: 35–39.

    Article  CAS  Google Scholar 

  • Jen PHS, Sun XD (1990) Influence of monaural plugging on postnatal development of auditory spatial sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Chin J Physiol 33: 231–246.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52: 819–847.

    PubMed  CAS  Google Scholar 

  • Jerger JF, Harford ER (1966) Alternate and simultaneous binaural balancing of pure tones. J Speech Hear Res 3: 15–30.

    Google Scholar 

  • Jerger J, Silman S, Lew HL, Chmiel R (1993) Case studies in binaural interference: converging evidence from behavioral and electrophysiologic measures. J Am Acad Audiol 4: 122–131.

    PubMed  CAS  Google Scholar 

  • Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci 14: 137–167.

    Article  PubMed  CAS  Google Scholar 

  • Kelley MW, Talreja DR, Corwin JT (1995) Replacement of hair cells after laser micro-beam irradiation in cultured organs of cord from embryonic and neonatal mice. J Neurosci 15: 3013–3026.

    PubMed  CAS  Google Scholar 

  • Kiang NYS (1984) Peripheral neural processing of auditory information. In: DarianSmith I (ed), Handbook of Physiology, Section 1, Volume IH, Part 2. Bethesda, MD: American Physiological Society, pp. 639–674.

    Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Plasticity of temporal information processing in the primary auditory cortex. Nat Neurosci 1: 727–731.

    Article  PubMed  CAS  Google Scholar 

  • Killackey HP, Ryugo DK (1977) Effects of neonatal auditory system damage on the structure of the inferior colliculus of the rat. Anat Rec 187: 624.

    Google Scholar 

  • Kind PC (1999) Cortical plasticity: is it time for a change ? Curr Biol 9:R640–643. King AJ (1999) Sensory experience and the formation of a computational map of auditory space in the brain. BioEssays 21: 900–911.

    Google Scholar 

  • King AJ, Carlile S (1993) Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture. Exp Brain Res 94: 444–455.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Carlile S (1995) Neural coding for auditory space. In: Gazzaniga MS (ed.), The Cognitive Neurosciences. Cambridge, MA: The MIT Press, pp. 279–293.

    Google Scholar 

  • King AJ, Parsons CH (1999) Improved auditory spatial acuity in visually deprived ferrets. Eur J Neurosci 11: 3945–3956.

    Article  PubMed  CAS  Google Scholar 

  • King Al, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Moore DR, Hutchings ME (1994) Topographic representation of auditory space in the superior colliculus of adult ferrets after monaural deafening in infancy. J Neurophysiol 71: 182–194.

    PubMed  CAS  Google Scholar 

  • King AJ, Schnupp JWH, Thompson ID (1998) Signals from the superficial layers of the superior colliculus enable the development of the auditory space map in the deeper layers. J Neurosci 18: 9394–9408.

    PubMed  CAS  Google Scholar 

  • King AJ, Parsons CH, Moore DR (2000) Plasticity in the neural coding of auditory space in the mammalian brain. Proc Natl Acad Sci USA 97: 11821–11828.

    Article  PubMed  CAS  Google Scholar 

  • King Ai, Schnupp JWH, Doubell TP (200la) The shape of ears to come: dynamic coding of auditory space. Trends Cog Sci 5: 261–270.

    Google Scholar 

  • King AJ, Kacelnik O, Mrsic-Flogel TD, Schnupp JWH, Parsons CH, Moore DR (2001b) How plastic is spatial hearing? Audiol Neurootol 6: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM (1984) Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Brain Res 306: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM, Semple MN (1985) Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. J Neurophysiol 53: 1483–1500.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353: 341–363.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2: 1177–1194.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1983) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222: 939–942.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1984) The role of auditory experience in the development and maintenance of sound localization. Trends Neurosci 7: 326–330.

    Article  Google Scholar 

  • Knudsen EI (1985) Experience alters the spatial tuning of auditory units in the optic tectum during a sensitive period in the barn owl. J Neurosci 5: 3094–3109.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1998) Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279: 1531–1533.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417: 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253: 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230: 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J Neurosci 10: 222–232.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200: 795–797.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133: 13–21.

    Article  Google Scholar 

  • Knudsen EI, Esterly SD, Knudsen PF (1984a) Monaural occlusion alters sound localization during a sensitive period in the barn owl. J Neurosci 4: 1001–1011.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Knudsen PF, Esterly SD (1984b) A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl. J Neurosci 4: 1012–1020.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, du Lac S (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates. J Neurosci 11: 1727–1747.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, Olsen JF (1994) Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification. J Neurophysiol 71: 79–94.

    PubMed  CAS  Google Scholar 

  • Koerber C, Pfeiffer RR, Warr WB, Kiang NYS (1966) Spontaneous spike discharges from units in the cochlear nucleus after destruction of the cochlea. Exp Neurol 16: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1993) Listening with two ears. Sci Am 268: 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70: 1717–1721.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1996) Developmental influence of glycinergic transmission: regulation of NMDA receptor-mediated EPSPs. J Neurosci 16: 1836–1843.

    PubMed  CAS  Google Scholar 

  • Kotak VC, Sanes DH (1997) Deafferentation weakens excitatory synapses in the developing central auditory system. Eur J Neurosci 9: 2340–2347.

    Article  PubMed  CAS  Google Scholar 

  • Kujala T, Alho K, Näätänen R (2000) Cross-modal reorganization of human cortical functions. Trends Neurosci 23: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Land PW, Rose LL, Harvey AR, Liverman SA (1984) Neonatal auditory cortex lesions result in aberrant crossed corticotectal and corticothalamic projections in rats. Brain Res 314: 126–130.

    PubMed  CAS  Google Scholar 

  • Laska M, Walder M, Schneider I, von Wedel H (1992) Maturation of binaural interaction components in auditory brain stem responses of young guinea pigs with monaural or binaural conductive hearing loss. Eur Arch Otorhinolaryngol 249: 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Lessard N, Paré M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395: 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1949) Development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91: 209–242.

    Article  PubMed  CAS  Google Scholar 

  • Lewald J (2002) Vertical sound localization in blind humans. Neuropsychologia 40: 1868–1872.

    Article  PubMed  Google Scholar 

  • Linkenhoker BA, Knudsen EI (2002) Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Steward O, Rubel EW (1980) The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2-deoxyD-glucose autoradiography. Brain Res 196: 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Fuhrmann DS, Yang W, Rubel EW (1992) Aberrant projection induced by otocyst removal maintains normal tonotopic organization in the chick cochlear nucleus. J Neurosci 12: 962–969.

    PubMed  CAS  Google Scholar 

  • Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4: 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Matsushima JI, Shepherd RK, Seldon HL, Xu SA, Clark GM (1991) Electrical stimulation of the auditory nerve in deaf kittens: effects on cochlear nucleus morphology. Hear Res 56: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Martin RL, Mossop JE, Moore DR (1997) Response properties of neurons in the inferior colliculus of the monaurally-deafened ferret to acoustic stimulation of the intact ear. J Neurophysiol 78: 767–779.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Glaser EM (1988) Auditory cortical responses to neonatal deafening: pyramidal neuron spine loss without changes in growth or orientation. Exp Brain Res 72: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • McMullen NT, Goldberger B, Suter CM, Glaser EM (1988) Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer microscope study in the rabbit. J Comp Neurol 267: 92–106.

    Article  PubMed  CAS  Google Scholar 

  • McPartland JL, Culling JF, Moore DR (1997) Changes in lateralization and loudness judgements during one week of unilateral ear plugging. Hear Res 113: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neurosci 8: 33–55.

    Article  CAS  Google Scholar 

  • Middlebrooks JC (1999) Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J Acoust Soc Am 106: 1493–1510.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42: 135–159.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM (2000) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res 147: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Miller GL, Knudsen EI (1999) Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl. J Neurosci 19: 2326–2336.

    PubMed  CAS  Google Scholar 

  • Mody M, Schwartz RG, Gravel JS, Ruben RI (1999) Speech perception and verbal memory in children with and without histories of otitis media. J Speech Lang Hear Res 42: 1069–1079.

    PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1992) Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J Neurosci 12: 3473–3484.

    PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1993) Early monaural occlusion alters the neural map of inter-aural level differences in the inferior colliculus of the barn owl. Brain Res 619: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1994) Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hear Res 74: 148–164.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time difference in the owl. J Neurosci 1: 40–48.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1997) An Introduction to the Psychology of Hearing. 4th ed. San Diego, CA: Academic Press, 1997.

    Google Scholar 

  • Moore DR (1988) Auditory brain stem of the ferret: sources of projections to the inferior colliculus. J Comp Neurol 269: 342–354.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1990a) Auditory brain stem of the ferret: bilateral cochlear lesions in infancy do not affect the number of neurons projecting from the cochlear nucleus to the inferior colliculus. Dev Brain Res 54: 125–130.

    Article  CAS  Google Scholar 

  • Moore DR (1990b) Auditory brain stem of the ferret: early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. J Comp Neurol 302: 810–823.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1992) Trophic influences of excitatory and inhibitory synapses on neurones in the auditory brain stem. NeuroReport 3: 269–272.

    Google Scholar 

  • Moore DR (1993) Auditory brain stem responses in ferrets following unilateral cochlear removal. Hear Res 68: 28–34.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR (1994) Auditory brain stem of the ferret: long survival following cochlear removal progressively changes projections from the cochlear nucleus to the inferior colliculus. J Comp Neurol 339: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Aitkin LM (1975) Rearing in an acoustically unusual environment—effects on neural auditory responses. Neurosci Lett, 1: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1981) Plasticity of binaural interaction in the cat inferior colliculus. Brain Res 208: 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Kitzes LM (1985) Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. J Comp Neurol 240: 180–195.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Kitzes LM (1986). Cochlear nucleus lesions in the adult gerbil: Effects on neurone responses in the contralateral inferior colliculus. Brain Res 373: 268–274.

    Google Scholar 

  • Moore DR, Kowalchuk NE (1988) Auditory brain stem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol 272: 503–515.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Hutchings ME, King AJ, Kowalchuk NE (1989) Auditory brain stem of the ferret: some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. J Neurosci 9: 1213–1222.

    PubMed  CAS  Google Scholar 

  • Moore DR, Hutchings ME, Meyer SE (1991) Binaural masking level differences in children with a history of otitis media. Audiology 30: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, King M, McAlpine D, Martin RL, Hutchings ME (1993) Functional con- sequences of neonatal unilateral cochlear removal. Prog Brain Res 97: 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Russell FA, Cathcart NC (1995) Lateral superior olive projections to the inferior colliculus in normal and unilaterally deafened ferrets. J Comp Neurol 357: 204–216.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, France SJ, McAlpine D, Mossop JE, Versnel H (1997) Plasticity of inferior colliculus and auditory cortex following unilateral deafening in adult ferrets. In: Syka J (ed), Acoustical Signal Processing in the Central Auditory System. New York: Plenum, pp. 489–499.

    Chapter  Google Scholar 

  • Moore DR, Hine JE, Jiang ZD, Matsuda H, Parsons CH, King M (1999) Conductive hearing loss produces a reversible binaural hearing impairment. J Neurosci 19: 87048711.

    Google Scholar 

  • Moore DR, Hogan SC, Kacelnik O, Parsons CH, Rose MM, King M (2001) Auditory learning as a cause and treatment of central dysfunction. Audiol Neurootol 6: 216–220.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK, Bohne BA (1983) Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear Res 9: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK, Kim J, Bohne BA (1997) Neuronal and transneuronal degeneration of auditory axons in the brain stem after cochlear lesions in the chinchilla: cochleotopic and non-cochleotopic patterns. Hear Res 103: 151–168.

    Article  PubMed  CAS  Google Scholar 

  • Mossop JE, Wilson MJ, Caspary DM, Moore DR (2000) Down-regulation of inhibition following unilateral deafening. Hear Res 147: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426: 561–571.

    Article  PubMed  CAS  Google Scholar 

  • Movshon JA, Van Sluyters RC (1981) Visual neural development. Annu Rev Psychol 32: 477–522.

    Article  PubMed  CAS  Google Scholar 

  • Mrsic-Flogel TD, King AJ, Jenson RL, Schnupp JWH (2001) Listening through different ears alters spatial response fields in ferret primary auditory cortex. J Neurophysiol 86: 1043–1046.

    PubMed  CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214: 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Nordlund B (1964) Directional audiometry. Acta Otolaryngol (Stockh) 57: 1–18.

    Article  CAS  Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 168–221.

    Chapter  Google Scholar 

  • Oliver DL, Shneiderman A (1991) The anatomy of the inferior colliculus: a cellular basis for integration of monaural and binaural information. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing: The Central Auditory System. New York: Raven Press, pp. 195–222.

    Google Scholar 

  • Pallas SL, Littman T, Moore DR (1999) Cross-modal respecification of callosal connectivity without altering thalamocortical input. Proc Natl Acad Sci USA 96:8751–8756. Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299: 248–249.

    Google Scholar 

  • Palmer AR, King Ai (1985) A monaural space map in the guinea-pig superior colliculus. Hear Res 17: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Parks TN (1981) Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol 202: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Parsons CH, Lanyon RG, Schnupp JW, King AJ (1999) Effects of altering spectral cues in infancy on horizontal and vertical sound localization by adult ferrets. J Neurophysiol 82: 2294–2309.

    PubMed  CAS  Google Scholar 

  • Pasic TR, Moore DR, Rubel EW (1994) Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. J Comp Neurol 348: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Paterson JA, Hosea EW (1993) Auditory behaviour and brain stem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption. Behav Brain Res 53: 73–89.

    Article  PubMed  CAS  Google Scholar 

  • Pillsbury HC, Grose JH, Hall JW 3rd (1991) Otitis media with effusion in children. Binaural hearing before and after corrective surgery. Arch Otolaryngol Head Neck Surg 117: 718–723.

    Google Scholar 

  • Popelâr J, Erre JP, Aran JM, Cazals Y (1994) Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hear Res 72: 125–134.

    Article  PubMed  Google Scholar 

  • Powell TPS, Erulkar SD (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat (Lond) 96: 249–268.

    CAS  Google Scholar 

  • Purves D, Lichtman JW (1985) Principles of Neural Development. Sunderland, MA: Sinauer.

    Google Scholar 

  • Rajan R (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci 1: 138–143.

    Article  PubMed  CAS  Google Scholar 

  • Rajan R (2001) Plasticity of excitation and inhibition in the receptive field of primary auditory cortical neurons after limited receptor organ damage. Cereb Cortex 11: 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338: 17–49.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP (1995) Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci 18: 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker JP, Kniepert U (1994) Auditory localization behaviour in visually deprived cats. Eur J Neurosci 6: 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF, Chan JCK (1987) Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Dev Brain Res 34: 281–290.

    Article  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103.

    PubMed  CAS  Google Scholar 

  • Recanzone GH, Makhamra SD, Guard DC (1998) Comparison of relative and absolute sound localization ability in humans. J Acoust Soc Am 103: 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Roberts JE, Burchinal MR, Davis BP, Collier AM, Henderson FW (1991) Otitis media in early childhood and later language. J Speech Hear Res 34: 1158–1168.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471.

    Article  PubMed  CAS  Google Scholar 

  • Robinson K, Gatehouse S (1994) Changes in intensity discrimination following monaural long-term use of a hearing aid. J Acoust Soc Am 97: 1183–1190.

    Article  Google Scholar 

  • Röder B, Teder-Sälejärvi W, Sterr A, Rösler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400: 162–166.

    Article  PubMed  Google Scholar 

  • Romand R (1992) Development of Auditory and Vestibular Systems 2. Amsterdam: Elsevier.

    Google Scholar 

  • Rose S (1973) The Conscious Brain. London: Weidenfeld and Nicolson.

    Google Scholar 

  • Rubel EW, Smith ZD, Steward 0 (1981) Sprouting in the avian brain stem auditory pathway: dependence on dendritic integrity. J Comp Neurol 202: 397–414.

    CAS  Google Scholar 

  • Rubel EW, Hyson RL, Durham D (1990) Afferent regulation of neurons in the brain stem auditory system. J Neurobiol 21: 169–196.

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Popper AN, Fay RR, eds (1998) Development of the Auditory System. New York: Springer-Verlag.

    Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Chapter  Google Scholar 

  • Russell FA, Moore DR (1995) Afferent reorganisation within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal. J Comp Neurol 352: 607–625.

    Article  PubMed  CAS  Google Scholar 

  • Russell FA, Moore DR (1999) Effects of unilateral cochlear removal on dendrites in the gerbil medial superior olivary nucleus. Eur J Neurosci 11: 1379–1390.

    Article  PubMed  CAS  Google Scholar 

  • Russell FA, Moore DR (2002) Ultrastructural effects of unilateral deafening on afferents to the gerbil medial superior olivary nucleus. Hear Res 173: 43–61.

    Article  PubMed  Google Scholar 

  • Ryugo DK (1992) The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 23–65.

    Chapter  Google Scholar 

  • Ryugo DK, Ryugo R, Globus A, Killackey HP (1975) Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Res 90: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RJ, Saunders SS, Gratton MA, Arehole S, Powers N (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50: 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RI, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147: 261–274.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Constantine-Paton M (1985) The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J Neurosci 5: 1152–1166.

    PubMed  CAS  Google Scholar 

  • Sanes DH, Chokshi P (1992) Glycinergic transmission influences the development of dendrite shape. NeuroReport 3: 323–326.

    Google Scholar 

  • Sanes DH, Takacs C (1993) Activity-dependent refinement of inhibitory connections. Eur J Neurosci 5: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Markowitz S, Bernstein J, Wardlow J (1992) The influence of inhibitory afferents on the development of postsynaptic dendritic arbors. J Comp Neurol 321: 637 614.

    Google Scholar 

  • Sanes DH, Malone BJ, Semple MN (1998) Role of synaptic inhibition in processing of dynamic binaural level stimuli. J Neurosci 18: 794–803.

    PubMed  CAS  Google Scholar 

  • Sasaki CT, Kauer JS, Babitz L (1980) Differential [14C]2-deoxyglucose uptake after deafferentation of the mammalian auditory pathway—a model for examining tinnitus. Brain Res 194: 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging Cereb Cortex 8: 156–163.

    CAS  Google Scholar 

  • Schnupp JWH, King AJ, Smith AL, Thompson ID (1995) NMDA-receptor antagonists disrupt the formation of the auditory space map in the mammalian superior colliculus. J Neurosci 15: 1516–1531.

    PubMed  CAS  Google Scholar 

  • Schnupp JWH, King AJ, Carlile S (1998) Altered spectral localization cues disrupt the development of the auditory space map in the superior colliculus of the ferret. J Neurophysiol 79: 1053–1069.

    PubMed  CAS  Google Scholar 

  • Schnupp JWH, Booth J, King AJ (2003) Modeling individual differences in ferret external ear transfer functions. J Acoust Soc Am 113: 2021–2030.

    Article  PubMed  Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Chapter  Google Scholar 

  • Schwartz IR, Higa JF (1982) Correlated studies of the ear and brain stem in the deaf white cat: changes in the spiral ganglion and the medial superior olivary nucleus. Acta Otolaryngol (Stockh) 93: 9–18.

    Article  CAS  Google Scholar 

  • Sebkova J, Bamford JM (1981) Some effects of training and experience for children using one and two hearing aids. Br J Audiol 15: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Shatz CJ (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62: 738–855.

    PubMed  CAS  Google Scholar 

  • Shi J, Aamodt SM, Constantine-Paton M (1997) Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J Neurosci 17:626/ 6276.

    Google Scholar 

  • Shinn-Cunningham B (2001) Models of plasticity in spatial auditory processing. Audiol Neurootol 6: 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Shinn-Cunningham BG, Durlach NI, Held RM (1998) Adapting to supernormal auditory localization cues. II. Constraints on adaptation of mean response. J Acoust Soc Am 103: 3667–3676.

    Google Scholar 

  • Silman S (1993) Late-onset auditory deprivation. J Am Acad Audiol 4(5):xiii–xiv (editorial).

    Google Scholar 

  • Silman S, Gelfand SA, Silverman CA (1984) Late-onset auditory deprivation: effects of monaural versus binaural hearing aids. J Acoust Soc Am 76: 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  • Silverman MS, Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40: 1266–1274.

    Google Scholar 

  • Silverman CA, Emmer MB (1993) Auditory deprivation and recovery in adults with asymmetric sensorineural hearing impairment. J Am Acad Audiol 4: 338–346.

    PubMed  CAS  Google Scholar 

  • Slattery WH 3rd, Middlebrooks JC (1994) Monaural sound localization: acute versus chronic unilateral impairment. Hear Res 75: 38–46.

    Article  PubMed  Google Scholar 

  • Smith ZD, Gray L, Rubel EW (1983) Afferent influences on brain stem auditory nuclei of the chicken: n. laminaris dendritic length following monaural conductive hearing loss. J Comp Neurol 220: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Parsons CH, Lanyon, RG, Bizley JK, Akerman CJ, Baker GE, Dempster AC, Thompson ID, King AJ (2004) An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. Eur J Neurosci 19, in press.

    Google Scholar 

  • Snyder RL, Rebscher SJ, Cao KL, Leake PA, Kelly K (1990) Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res 50: 7–33.

    Google Scholar 

  • Snyder RL, Rebscher SJ, Leake PA, Kelly K, Cao K (1991) Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hear Res 56: 246–264.

    Google Scholar 

  • Spigelman MN (1976) A comparative study of the effects of early blindness on the development of auditory-spatial learning. In: Jastrzembska ZS (ed), The Effects of Blindness and Other Impairments on Early Development. New York: The American Foundation for the Blind, pp. 29–45.

    Google Scholar 

  • Spitzer MW, Semple MN (1991) Interaural phase coding in auditory midbrain: influence of dynamic stimulus features. Science 254: 721–724.

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Meredith MA (1993) The Merging of the Senses. MIT Press, Cambridge MA. Stephenson H, Higson JM, Haggard M (1995) Binaural hearing in adults with histories of otitis media in childhood. Audiology 34: 113–123.

    Google Scholar 

  • Sterritt GM, Robertson DG (1964) Pathology resulting from chronic paraffin ear plugs: methodological problem in auditory sensory deprivation research. Percept Motor Skills 19: 662.

    Article  PubMed  CAS  Google Scholar 

  • Steward O (1989) Principles of Cellular, Molecular, and Developmental Neuroscience. New York: Springer-Verlag.

    Google Scholar 

  • Stretavan DW, Shatz CJ, Stryker MP (1988) Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336: 468–471.

    Article  Google Scholar 

  • Stuermer 1W, Scheich H (2000) Early unilateral auditory deprivation increases 2deoxyglucose uptake in contralateral auditory cortex of juvenile Mongolian gerbils. Hear Res 146: 185–199.

    Article  Google Scholar 

  • Takahashi TT, Keller CH (1992) Simulated motion enhances neuronal selectivity for a sound localization cue in background noise. J Neurosci 12: 4381–4390.

    PubMed  CAS  Google Scholar 

  • Thompson I (2000) Cortical development: binocular plasticity turned outside-in. Curr Biol 10: R348–350.

    Article  PubMed  CAS  Google Scholar 

  • Tierney TS, Russell FA, Moore DR (1997) Susceptibility of developing cochlear nucleus neurons to deafferentation-induced death abruptly ends just before the onset of hearing. J Comp Neurol 378: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Tierney TS, Doubell TP, Xia G, Moore DR (2001) Development of brain derived neurotrophic factor and neurotrophin-3 immunoreactivity in the lower auditory brain stem of the postnatal gerbil. Eur J Neurosci 14: 785–793.

    Article  PubMed  CAS  Google Scholar 

  • Tonndorf J (1972) Bone conduction. In: Tobias JV (ed) Foundations of Modern Auditory Theory, Vol 2. New York: Academic Press, pp. 195–237.

    Google Scholar 

  • Trune DR (1982) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J Comp Neurol 209: 409–424.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: effects of conductive and sensorineural hearing loss on n. magnocellularis. J Comp Neurol 238: 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Born DE, Rubel EW (1987) Changes in spontaneous activity and CNS morphology associated with conductive and sensorineural hearing loss in chickens. Ann Otol Rhinol Laryngol 96: 343–350.

    PubMed  CAS  Google Scholar 

  • Tucci DL, Cant NB, Durham D (2001) Effects of conductive hearing loss on gerbil central auditory system activity in silence. Hear Res 155: 124–132.

    Article  PubMed  CAS  Google Scholar 

  • Vale C, Sanes DH (2000) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci 20: 1912–1921.

    PubMed  CAS  Google Scholar 

  • Wagner H (1990) Receptive fields of neurons in the owl’s auditory brain stem change dynamically. Eur J Neurosci 2: 949–959.

    Article  PubMed  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13: 371–386.

    PubMed  CAS  Google Scholar 

  • Wall PD, Egger MD (1971) Formation of new connexions in adult rat brains after partial deafferentation. Nature 232: 542–545.

    Article  PubMed  CAS  Google Scholar 

  • Wallace MT, Stein BE (2000) The role of experience in the development of multisensory integration. Soc Neurosci Abstr 26: 1220.

    Google Scholar 

  • Wanet MC, Veraart C (1985) Processing of auditory information by the blind in spatial localization tasks Perception Psychophys 38: 91–96.

    Article  CAS  Google Scholar 

  • Webster DB (1983a) Auditory neuronal sizes after a unilateral conductive hearing loss. Exp Neurol 79: 130–140.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1983b) Late onset of auditory deprivation does not affect brain stem auditory neuron soma size. Hear Res 12: 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Webster DB, Popper AN, Fay RR, eds (1992) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Wenzel EM, Arruda M, Kistler DJ, Wightman FL (1993) Localization using nonindividualized head-related transfer functions. J Acoust Soc Am, 94: 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003–1017.

    PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1997a) Sound localization. In: Yost WA, Popper AN, Fay RR (eds), Human Psychophysics. New York, Springer-Verlag, pp. 155–192.

    Google Scholar 

  • Wightman FL, Kistler DJ (1997b) Monaural sound localization revisited. J Acoust Soc Am 101: 1050–1063.

    Article  PubMed  CAS  Google Scholar 

  • Wilmington D, Gray L, Jahrsdoerfer R (1994) Binaural processing after corrected congenital unilateral conductive hearing loss. Hear Res 74: 99–114.

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49: 674–685.

    PubMed  CAS  Google Scholar 

  • Withington DJ (1992) The effect of binocular lid suture on auditory responses in the guinea-pig superior colliculus. Neurosci Lett 136: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Withington-Wray DJ, Binns KE, Keating MJ (1990a) The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental visual deprivation. Eur J Neurosci 2: 682–692.

    Article  PubMed  Google Scholar 

  • Withington-Wray DJ, Binns KE, Dhanjal SS, Brickley SG, Keating MJ (1990b) The maturation of the superior collicular map of auditory space in the guinea pig is disrupted by developmental auditory deprivation. Eur J Neurosci 2: 693–703.

    Article  PubMed  Google Scholar 

  • Wong RO, Meister M, Shatz CJ (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11: 923–938.

    Article  PubMed  CAS  Google Scholar 

  • Wong WT, Myhr KL, Miller ED, Wong RO (2000) Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J Neurosci 20: 351360.

    Google Scholar 

  • Wright BA, Fitzgerald MB (2001) Different patterns of human discrimination learning for two interaural cues to sound-source location. Proc Natl Acad Sci USA 98: 1230712312.

    Google Scholar 

  • Wu GY, Malinow R, Cline HT (1996) Maturation of a central glutamatergic synapse. Science 274: 972–976.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Pollak G (1994) Binaural inhibition in the dorsal nucleus of the lateral lemniscus of the mustache bat affects responses for multiple sounds. Audit Neurosci 1: 1–17.

    Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64: 465–488.

    PubMed  CAS  Google Scholar 

  • Zheng W, Knudsen EI (1999) Functional selection of adaptive auditory space map by GABAÀ mediated inhibition. Science 284: 962–965.

    Article  PubMed  CAS  Google Scholar 

  • Zwiers MP, Van Opstal AJ, Cruysberg JR (2001) Two-dimensional sound-localization behavior of early-blind humans. Exp Brain Res 140: 206–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, D.R., King, A.J. (2004). Plasticity of Binaural Systems. In: Parks, T.N., Rubel, E.W., Popper, A.N., Fay, R.R. (eds) Plasticity of the Auditory System. Springer Handbook of Auditory Research, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4219-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4219-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1932-8

  • Online ISBN: 978-1-4757-4219-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics