Skip to main content

Abstract

With an understanding of the basic passive components provided by previous chapters, we can now study the more complex passive components. They are often formed from the basic passive components. Those complex passive components are sometimes composed of several simple components, but can also be fabricated using monolithic integration methods. Multiple schemes can also be used to fabricate each type of those components to achieve a similar function. Once again, we will highlight the principles applied and basic components used to form the complex components as well as how the functions are achieved as we go through this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keiser, G., Optical Fiber Communications. 2/ed, McGraw-Hill, 1991.

    Google Scholar 

  2. Fujii, Y., Minowa, J., and Tanada, H., Practical two-wavelength multiplexer and demultiplexer: design and performance. Applied Opitcs 1983; 22: 3090 — 3097.

    Google Scholar 

  3. Senior, J. M., Optical Fiber Communication-Principles and Practice. 2/ed, Prentice Hall, 1992.

    Google Scholar 

  4. Kashima, Norio, Passive Optical Components for Optical Fiber Transmission. Artech House, 1995.

    Google Scholar 

  5. Digonett, M and Shaw, H. J., Wavelength multiplexing in single-mode fiber couplers. Applied Optics 1983; 22: 484–491.

    Article  ADS  Google Scholar 

  6. Smit, M.K. and Dam, C. van, PHASAR-based WDM devices: principles, design, and applications. IEEE Journal of Selected Topics on Quantum Electronics 1996; 2: 236–250.

    Article  Google Scholar 

  7. Ishida,O., Takahashi, H., Suzuki, S., and Inoue, Y., Multichannel frequency-selective switching employing an arrayed-waveguide grating multiplexer with fold-back optical paths, IEEE Photonics Technology Letters. 1994; 6: 1219–1221.

    Article  ADS  Google Scholar 

  8. Hida, Y., Inoue, Y., and Imamura, S., Polymeric arrayed-waveguide grating multiplexeroperating around 1.3 µm. Electronics Letters 1994; 30: 959–960.

    Article  Google Scholar 

  9. Smit, M. K., Koonen, T., Herrmann, H., and Sohler, W., “Wavelength-Selective Devices.” In Fiber Optic Communication Devices. Grote, N. and Venghaus, V., eds. Springer, 2001.

    Google Scholar 

  10. l0.Ramaswami, R. and Sivarajan, Optical Networks: A Practical Perspective. Morgan Kaufman, 1998.

    Google Scholar 

  11. Lin, L. Y., Goldstein, E. L., Simmons, J. M., Tkach, R. W., High-density connection-symmetric free-space micromachined polygon optical cross-connects with low loss for WDM networks. Proc. OFC’98, PD24–1, San Jose, 1998.

    Google Scholar 

  12. Giles, R., Aksyuk, V., Bolle, C., Pardo, F., and Bishoh. D. J., “Silicon Micromachines inOptical Communications Networks: Tiny Machines for Large Systems.” In MEMS and MOEMS Technology and Applications. Rai-Choudhury, P., ed. SPIE Press, 2000.

    Google Scholar 

  13. Su, G.-D. J., Jiang, F., Chiu, E., Avakian, A., Dickson, J., Jia, D., and Tsao, T., Design, test and qualification of stiction-free MEMS optical switches. CLEO/Pacific Rim 2003, Taipei, Taiwan.

    Google Scholar 

  14. Agilent Photonic Swiching Platform: N3565A 32 x 32 photonic switch, technical specifications, http://www.agilent.com/

    Google Scholar 

  15. Noguchi, K., Optical multichannel switch composed of liquid-crystal light-modulator arrays and bi-refringent crystals. Electronnics Letters 1997; 33: 1627–1629.

    Article  Google Scholar 

  16. Crossland, W. A., Manolis, I. G., Redmond, M. M., Tan, K. L., Wilkinson, T. D., Holmes, M. J., Parker, T. R., Chu, H. H., Croucher, J., Handerek, V. A., Warr, S. T., Robertson, B., Bonas, I. G., Franklin, R., Stace, C., White, H. J., Woolley, R. A., and Henshall, G., Holographic optical switching: the `ROSES’ demonstrator. Journal of Lightwave Technology 2000; 18: 1845–1854.

    Article  ADS  Google Scholar 

  17. Shibata, T., Okuno, M., Goh, T., Yasu, M., Itoh, M., Ishii, M., Hibino, Y., Sugita, A., and Himeno, A., Silica-based 16 x 16 optical matrix switch module with integrated driving circuits, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001; postdeadline paper, 3: WR1–1 -WR1–3.

    Google Scholar 

  18. Rabbering, F. L. W., van Nunen, J. F. P., and Eldada, L., Polymeric 16 x 16 digital optical switch matrix. ECOC 2001; Postdeadline paper, 6: 78–79.

    Google Scholar 

  19. Borella, M., S., Jue, J. P., Banerjee, D., Ramamurthym, B., and Mukherjee, B., Optical components for WDM lightwave networks. Proceedings of IEEE 1997; 85: 1274–1307.

    Article  Google Scholar 

  20. Al-Salamesh, D. Y., Korotky, S. K., Levy, D. S., Murphy, T. O., Patel, S. H., Richards, G. W., and Tentarelli, E. S., “Optical Switching in Transport Networks: Applications, Requirements, Architectures, Technologies, and Solutions.” In Optical Fiber Telecommunications IVA: Components. Kaminow, I. and Li, T., eds. Academic Press 2002.

    Google Scholar 

  21. Franz J. H. and Jain V. K., Optical Communications: Components and Systems. Alpha Science International Ltd., 2000.

    Google Scholar 

  22. Hinton, H. S., Photonic switching fabrics. IEEE Communication Magazine 1990; 28: 71–89.

    Article  Google Scholar 

  23. Siegman, A. E., Lasers. University Press, 1986.

    Google Scholar 

  24. Lin, C. F. and Ku, P. C., Analysis of stability in two-mode laser systems. IEEE J. Quantum Electron. 1996; 32: 1377–1382.

    Article  ADS  Google Scholar 

  25. Joergenson, C., Durhuus, T., Braagaard, C., Mikkelsen, B., and Stubkjaer, K. E., 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers. IEEE Photonics Technology Letters 1993; 5: 657–660.

    Article  ADS  Google Scholar 

  26. Joergenson, C., Danielsen, S. L., Vaa, M., Mikkelsen, B., Stubkjaer, K. E., Doussiere, P, Pommerau, L. Goldstein, and Goix, M., 40 Gbit/s all-optical wavelength conversion by semiconductor optical amplifiers. Electronics Letters 1996; 32: 367–368.

    Article  Google Scholar 

  27. Janz, C., Dagens, B., Bisson, A., Poingt, F., Pommereau, F., Gaborit, F., Guillemot, I., and Renaud, M., Integrated all-active Mach-Zehnder wavelength converter with —10 dBm signal sensitivity and 15 dB dynamic range at 10 Gbit/s. Electronics Letters 1999; 35: 588590.

    Google Scholar 

  28. Leuthold, J., Joyner, C. H., Mikkelson, B., Raybon, G., Pleumeekers, J. L., Miller, B. I., Dreyer, K., and Burrus, C. A., 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electronics Letters 2000; 36: 1129 1130.

    Google Scholar 

  29. Agrawal G. P., Nonlinear Fiber Optics. 2/ed. Academic Press, 1995.

    Google Scholar 

  30. Zhou, J., Park, N., Vahala, K. J., Newkirk, M. A., and Miller, M. I., Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift. IEEE Photonics Technology Letters 1994; 6: 984–987.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, CF. (2004). Passive Components (II). In: Optical Components for Communications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4178-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4178-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5399-5

  • Online ISBN: 978-1-4757-4178-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics