Skip to main content

Microglia and Macrophage Responses in Cerebral Ischemia

  • Chapter
  • 177 Accesses

Abstract

Focal impairment, or cessation of blood flow to the brain, restricts the delivery of substrates, most importantly oxygen and glucose, and thereby impairs maintenance of ionic gradients. This is followed by depolarization of neurons and glia that release excitatory amino acids (glutamate) into the extracellular space and accumulate Ca2+ (reviewed in Dirnagl et al. (1999)). Ca2+ is a universal second messenger leading to production of proteolytic enzymes and free-radical species, and activation of glutamate receptors. In the center of the ischemic territory, where the flow reduction is most severe, these processes induce rapid cell death. A significant proportion of neurons, however, dies by an internal program of self-destruction, designated apoptosis or programmed cell death (Bredesen (1995)). Apoptotic neurons are intermingled with necrotic neurons in the core of infarctions. In the boundary zone, apoptotic cell death is ongoing during the first week after focal ischemia (Li et al. (1995); Braun et al. (1996); Isenmann et al. (1998)). Accordingly, several studies using modem imaging techniques provided evidence for infarct growth during the first few days after cerebral ischemia (Marchal et al. (1996); Beaulieu et al. (1999)). In experimental animals, mediators of the immune system appear to play an essential role in this secondary infarct growth. Mice lacking interferon regulatory factor (IRF), a nuclear transcription factor, developed similar infarct volumes at 24 hours, but significant differences in favor of the knock-out animals became evident at day 3 (Iadecola et al. (1999)).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996). The role of inflammation and cytokines in brain injury. Neurosci Biobehav Reviews 20:445–452.

    CAS  Google Scholar 

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993). Cytotoxicity of microglia. Glia 7:111–118.

    PubMed  CAS  Google Scholar 

  • Barone FC, Arvin B, White RF, Miller A, Web CL, Willette RN, Lysko PG, Feuerstein GZ (1997). Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 28:1233–1244.

    PubMed  CAS  Google Scholar 

  • Bauer J, Huitinga I, Zhao W, Lassmann H, Hickey WF, Dijkstra CD (1995). The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15:437–446.

    PubMed  CAS  Google Scholar 

  • Beaulieu C, De Crespigny A, Tong DC, Moseley ME, Albers GW, Marks MP (1999). Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46:568–578.

    PubMed  CAS  Google Scholar 

  • Becker KJ, McCarron RM, Ruetzler C, Laban O, Sternberg E, Flanders KJ, Hallenbeck JM (1997). Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci (USA) 94:10873–10878.

    CAS  Google Scholar 

  • Bhat RV, DiRocco R, Marcy VR, Flood DG, Zhu Y, Dobrzanski P, Siman R, Scott R, Contreras PC, Miller M (1996). Increased expression of IL 1-β converting enzyme in hippocampus after ischemia: selective localization in microglia. J Neurosci 16:4146–4154.

    PubMed  CAS  Google Scholar 

  • Bolander HG, Persson L, Hillered L, D’Argy R, Ponten U, Olsson Y (1989). Regional cerebral blood flow and histopathological changes after middle cerebral artery occlusion in rats. Stroke 20:930–937.

    PubMed  CAS  Google Scholar 

  • Botchina GI, Meistrell ME, Botchina IL, Tracey KJ (1997). Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 3:765–781.

    Google Scholar 

  • Braun JS, Jander S, Schroeter M, Witte OW, Stoll G (1996). Spatiotemporal relationship of apoptotic cell death to lymphomonocytic infiltration in photochemically induced focal ischemia of the rat cerebral cortex. Acta Neuropath 92:255–263.

    PubMed  CAS  Google Scholar 

  • Bredesen DE (1995). Neural apoptosis. Ann Neurol 38:839–851.

    PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741.

    PubMed  CAS  Google Scholar 

  • Chamak B, Morandi V, Mallat M (1994). Brain macrophages stimulate neunte outgrowth and regeneration by secreting thrombospondin. J Neurosci Res 38:221–233.

    PubMed  CAS  Google Scholar 

  • Chen H, Chopp M, Schultz L, Bodzin G, Garcia JH (1993). Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 118:109–116.

    PubMed  CAS  Google Scholar 

  • Clark RK, Lee EV, Fish CJ, White RF, Price WJ, Jonak ZL, Feuerstein GZ, Barone FC (1993). Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res Bull 31:565–572.

    PubMed  CAS  Google Scholar 

  • Clark WM, Lauten JD, Lessov N, Woodward W, Coull BM (1995). Time course of ICAM-1 expression and leukocyte subset infiltration in rat forebrain ischemia. Mol Chem Neuropathol 26:213–230.

    PubMed  CAS  Google Scholar 

  • Comelli MC, Guidolin D, Seren MS, Zanoni R, Canella R, Rubini R, Manev H (1993). Time course, localisation and pharmacological modulation of immediate early inducible genes, brain-derived neurotrophic factor and trkB messenger RNAs in the rat brain following photochemical stroke. Neuroscience 55:473–490.

    PubMed  CAS  Google Scholar 

  • Davis CA, Loddick SA, Toulmond S, Stroemer RP, Hunt J, Rothwell NJ (1999). The progression and topographic distribution of interleukin-1β expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 19:87–98.

    Google Scholar 

  • Dietrich D, Feng ZC, Leistra H, Watson BD, Rosenthal M (1994). Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab 14:20–28.

    PubMed  CAS  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999). Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397.

    PubMed  CAS  Google Scholar 

  • Elkabes S, DiCicco-Bloom EM, Black IB (1996). Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508–2521.

    PubMed  CAS  Google Scholar 

  • Ellison JA, Velier JJ, Spear P, Jonak ZL, Wang X, Barone FC, Feuerstein GZ (1998). Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke 29:1698–1706.

    PubMed  CAS  Google Scholar 

  • Endres M, Namura S, Shimizu-Sasamata M, Waeber C, Zhang L, Gomez-Isla T, Hyman BT, Moskowitz MA (1998). Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metabol 18:238–247.

    CAS  Google Scholar 

  • Finsen BR, Jorgensen MB, Diemer NH, Zimmer J (1993). Microglial MHC antigen expression after ischemic and kainic acid lesions of the adult rat hippocampus. Glia 7:41–49.

    PubMed  CAS  Google Scholar 

  • Flaris NA, Densmore TL, Molleston MC, Hickey WF (1993). Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction. Glia 7:34–40.

    PubMed  CAS  Google Scholar 

  • Flavin MP, Coughlin K, Ho LT (1997). Soluble macrophage factors trigger apoptosis in cultured hippocampal neurons. Neurosci 80:437–448.

    CAS  Google Scholar 

  • Friedlander RM, Gagliardini V, Hara H, Fink KB, Li W, MacDonald G, Fishman MC, Greenberg AH, Moskowitz MA, Yuan J (1997). Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawl and ischemic brain injury. J Exp Med 185:933–940.

    PubMed  CAS  Google Scholar 

  • Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993). Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623–635.

    PubMed  CAS  Google Scholar 

  • Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo G (1994). Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144:188–199.

    PubMed  CAS  Google Scholar 

  • George R, Griffin JW (1994). Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp Neurol 129:225–236.

    PubMed  CAS  Google Scholar 

  • Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993). Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36:681–693.

    PubMed  CAS  Google Scholar 

  • Gourmala NG, Buttini M, Limonta S, Sauter A, Boddeke HW (1997). Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain: effects of ischemia and peripheral lipopolysaccharide administration. J Neuroimmunol 74:35–44.

    PubMed  CAS  Google Scholar 

  • Gregersen R, Lambertsen K, Finsen B (2000). Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65

    PubMed  CAS  Google Scholar 

  • Hagemann G, Redecker C, Neumann-Haefelin T, Freund HJ, Witte OW (1998). Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 44:255–258.

    PubMed  CAS  Google Scholar 

  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Ayata G, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz M (1997). Inhibition of ICE family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012.

    PubMed  CAS  Google Scholar 

  • Heese K, Hock C, Otten U (1998). Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70:699–707.

    PubMed  CAS  Google Scholar 

  • Henrich-Noack P, Prehn JH, Krieglstein J (1996). TGF-beta 1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27:1609–1614.

    PubMed  CAS  Google Scholar 

  • Hewett SJ, Csernansky CA, Choi DW (1994). Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 13:487–494.

    PubMed  CAS  Google Scholar 

  • Hirji N, Lin TJ, Bissonnette E, Belosevic M, Befus AD (1998). Mechanisms of macrophage stimulation through CD8: macrophage CD8 alpha and CD8 beta induce nitric oxide production and associate killing of the parasite Leishmani major. J Immunol 160:6004–6011.

    PubMed  CAS  Google Scholar 

  • Hirji N, Lin TJ, Gichrist M, Nault G, Nohara O, Grill BJ, Belosevic M, Stenton GR, Schreiber AD, Befus AD (1999). Novel CD8 molecule on macrophages and mast cells: expression, function and signaling. Int Arch Allergy Immunol 118:180–182.

    PubMed  CAS  Google Scholar 

  • Hossmann KA (1995). Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565.

    Google Scholar 

  • Iadecola C (1997). Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132–139.

    PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997). Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164.

    PubMed  CAS  Google Scholar 

  • Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, Ross ME (1999). The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributed to ischemic brain injury. J Exp Med 189:719–727.

    PubMed  CAS  Google Scholar 

  • Isenmann S, Stoll G, Schroeter M, Krajewski S, Reed JC, Bähr M (1998). Differential regulation of bax, bc1–2, and bcl-x proteins in focal cortical ischemia in the rat. Brain Pathol 8:49–63.

    PubMed  CAS  Google Scholar 

  • Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G (1995). Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 15:42–51.

    PubMed  CAS  Google Scholar 

  • Jander S, Pohl J, Gillen C, Schroter M, Stoll G (1996). Vascular cell adhesion molecule1mRNA is expressed in immune-mediated and ischemic injury of the rat nervous system. J Neuroimmunol 70:75–80.

    PubMed  CAS  Google Scholar 

  • Jander S, Schroeter M, D’Urso D, Gillen C, Witte OW, Stoll G (1998). Focal cerebral ischemia of the rat brain elicits an unusual inflammatory response: early appearance of CD8 + macrophages/microglia. Eur J Neurosci 10:680–688.

    PubMed  CAS  Google Scholar 

  • Jander S, Schroeter M, Stoll G (2000). Role of NMDA receptor signalling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol 109:181–187.

    PubMed  CAS  Google Scholar 

  • Jander S, Lausberg F, Stoll G (2001a). Differential recruitment of CD8 + macrophages during Wallerian degeneration in the peripheral and central nervous system. Brain Pathol 11:27–38.

    PubMed  CAS  Google Scholar 

  • Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2001b). Cortical spreading expression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab 21:218–225.

    PubMed  CAS  Google Scholar 

  • Jorgensen MB, Finsen BR, Jensen MB, Castellano B, Diemer NH, Zimmer J (1993). Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88.

    PubMed  CAS  Google Scholar 

  • Kim JS, Gautam SC, Chopp M, Zalonga C, Jones ML, Ward PA, Welch KM (1995). Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein1 after focal cerebral ischemia in the rat. J Neuroimmunol 56:127–134.

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Harris VA, Welsh FA (1995). Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727.

    PubMed  CAS  Google Scholar 

  • Kochanek PM, Hallenbeck JM (1992). Polymorphonuclear leukocytes and monocytes/ macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23:1367–1379.

    PubMed  CAS  Google Scholar 

  • Kokaia Z, Zhao Q, Kokaia M, Elmer E, Metsis M, Smith ML, Siesjö BK, Lindvall O (1995). Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 136:73–88.

    PubMed  CAS  Google Scholar 

  • Kokaia Z, Andsberg G, Yan Q, Lindvall O (1998). Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 154:289–301.

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318.

    PubMed  CAS  Google Scholar 

  • Lauritzen M, Hansen AJ (1992). The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab 12:223–229.

    PubMed  CAS  Google Scholar 

  • Lawetzky A, Tiefenthaler G, Kubo R, Hünig T (1990). Identification and characterization or rat T cell populations expressing T cell receptors a/β and γ/δ. Eur J Immunol 20:343–349.

    PubMed  CAS  Google Scholar 

  • Lehrmann E, Kiefer R, Finsen B, Diemer NH, Zimmer J, Hartung HP (1995). Cytokines in cerebral ischemia: expression of transforming growth factor beta-1 mRNA in the postischemic adult hippocampus. Exp Neurol 131:1–10.

    Google Scholar 

  • Lehrmann E, Christensen T, Zimmer J, Diemer NH, Finsen B (1997). Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion. J Comp Neurol 386:461–476.

    PubMed  CAS  Google Scholar 

  • Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B (1998). Microglia and macrophages are major sources of locally produced transforming growth factor-betal after transient middle cerebral artery occlusion in rats. Glia 24:437–448.

    PubMed  CAS  Google Scholar 

  • Li Y, Sharov VG, Jiang N, Zalonga C, Sabbah HN, Chopp M (1995). Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 146:1045–1051.

    PubMed  CAS  Google Scholar 

  • Lin B, Ginsberg MD, Busto R, Dietrich WD (1998). Sequential analysis of subacute and chronic neuronal, astrocytic and microglial alterations after transient global ischemia in rats. Acta Neuropath 95:511–523.

    PubMed  CAS  Google Scholar 

  • Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M (1996). Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94:939–945.

    PubMed  CAS  Google Scholar 

  • Liu T, Clark RK, McDonell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994). Tumor necrosis factor-a expression in ischemic neurons. Stroke 25:1481–1488.

    PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91.

    PubMed  CAS  Google Scholar 

  • Marchal G, Beaudouin V, Rioux P, De la Sayette V, Le Doze F, Viader F, Derlon JM, Baron JC (1996). Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxwel-based data analysis. Stroke 27:599–606.

    PubMed  CAS  Google Scholar 

  • Martins-Ferreira H, Nedergaard M, Nicholson C (2000). Perspectives on spreading depression. Brain Res Rev 32:215–234.

    PubMed  CAS  Google Scholar 

  • McAuley MA (1995). Rodent models of focal ischemia. Cerebrovasc Brain Metabol Rev 7:153–180.

    CAS  Google Scholar 

  • Memezawa H, Smith ML, Siesjö BK (1992). Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559.

    PubMed  CAS  Google Scholar 

  • Minghetti L, Levi G (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125.

    PubMed  CAS  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1991). The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metabol 11:966–973.

    CAS  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1992). Progressive expression of immunomolecules on microglial cells in the rat dorsal hippocampus following transient forebrain ischemia. Acta Neur path (Berl) 83:149–157.

    CAS  Google Scholar 

  • Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, Del Zoppo GJ (1994). P-selektin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25:202–211.

    PubMed  CAS  Google Scholar 

  • Ordy JM, Wengenack TM, Bialobok P, Rodier P, Baggs RB, Dunlap WP, Kates B (1993). Selective vulnerability and early progression of hippocampal CA1 pyramidal cell degeneration and GFAP-positive astrocytes reactivity in the rat four-vessel occlusion model of transient global ischemia. Exp Neurol 119:128–139.

    PubMed  CAS  Google Scholar 

  • Perry VH, Gordon S (1987). Modulation of CD4 antigen on macrophages and microglia in rat brain. J Exp Med 166:1138–1143.

    PubMed  CAS  Google Scholar 

  • Perry VH, Andersson PB, Gordon S (1993). Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273.

    PubMed  CAS  Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998). Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205.

    PubMed  CAS  Google Scholar 

  • Piani D, Frei K, Do KQ, Cuenod M, Fontana A (1991). Murine brain macrophages induce NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neurosci Lett 133:159–162.

    PubMed  CAS  Google Scholar 

  • Prehn JH, Backhauss C, Krieglstein J (1993). Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13:521–525.

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierly JB, Plum F (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498.

    PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Streit WJ (1997). Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 47:34–48.

    PubMed  CAS  Google Scholar 

  • Rollo EE, Laskin DL, Denhardt DT (1996). Osteopontin inhibits nitric oxide production and cytotoxicity by activated RAW264.7 macropahges. J Leukoc Biol 60:397–404.

    PubMed  CAS  Google Scholar 

  • Rupalla K, Allegrini PR, Sauer D, Wiesner C (1998). Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropath 96:172–178.

    PubMed  CAS  Google Scholar 

  • Schäfer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sim RB, Petry F, Loos M, Weihe E (2000). Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol 164:544–5452.

    Google Scholar 

  • Schneider H, Pitossi F, Balschun D, Wagner A, Del Rey A, Besedovsky HO (1998). A neuromodulatory role of interleukin-1β in the hippocampus. Proc Nall Acad Sci USA 95:7778–7783.

    CAS  Google Scholar 

  • Schroeter M, Jander S, Witte OW, Stoll G (1994). Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55:195–203.

    PubMed  CAS  Google Scholar 

  • Schroeter M, Schiene K, Kraemer M, Hagemann G, Weigel H, Eysel UT, Witte OW, Stoll G (1995). Astroglial responses in photochemically induced focal ischemia of the rat cortex. Exp Brain Res 106:1–6.

    PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Huitinga I, Witte OW, Stoll G (1997). Phagocytic response in photochemically induced infarction of the rat cerebral cortex: the role of resident microglia. Stroke 28:382–386.

    PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Witte OW, Stoll G (1999). Hetereogeneity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience 89:1367–1377.

    PubMed  CAS  Google Scholar 

  • Schroeter M, Franke C, Stoll G, Hoehn M (2001a). Dynamic changes of MRI abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathol 101:114–122.

    PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Huitinga I, Stoll G (2001b). CD8+ phagocytes in focal ischemia of the rat brain: predominant origin from hematogenous macrophages and targeting to areas of pannecrosis. Acta Neuropathol 101:440–448.

    PubMed  CAS  Google Scholar 

  • Schwab ME (1990). Myelin-associated inhibitors of neurite outgrowth and regeneration in the CNS. Trends Neurosci 13:452–456.

    PubMed  CAS  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999). Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130.

    PubMed  CAS  Google Scholar 

  • Springer TA (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314.

    PubMed  CAS  Google Scholar 

  • Stoll G, Trapp BD, Griffin JW (1989). Macrophage function during Wallerian degeneration of the rat optic nerve: clearance of degenerating myelin and Ia expression. J Neurosci 9:2327–2335.

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S, Schroeter M (1998). Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–161.

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247.

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S, Schroeter M (2000). Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm 59 (suppl):81–89.

    CAS  Google Scholar 

  • Touzani O, Boutin H, Chuquet J, Rothwell N (1999). Potential mechanisms of interleukin1 involvement in cerebral ischemia. J Neuroimmunol 100:203–215.

    PubMed  CAS  Google Scholar 

  • Van Roojien N (1989). The liposome-mediated macrophage “suicide” technique. J Immunol Meth 124:1–6.

    Google Scholar 

  • Wang X, Feuerstein GZ (1995). Induced expression of adhesion molecules following brain ischemia. J Neurotrauma 12:825–832.

    PubMed  CAS  Google Scholar 

  • Wang X, Yue TL, White RF, Barone FC, Feuerstein GZ (1995). Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 26:661–665.

    PubMed  CAS  Google Scholar 

  • Wang X, Louden C, Yue TL, Ellison JA, Barone FC, Solleveld HA, Feuerstein GZ (1998). Delayed expression of osteopontin after focal stroke in the rat. JNeurosci 18:2075–2083.

    CAS  Google Scholar 

  • Wang X, Li X, Erhardt JA, Barone FC, Feuerstein GZ (2000). Detection of tumor necrosis factor-alpha mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J Cereb Blood Flow Metab 20:15–20.

    PubMed  Google Scholar 

  • Watson BD, Dietrich D, Busto R, Wachtel MS, Ginsberg MD (1985). Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504.

    PubMed  CAS  Google Scholar 

  • Weissenböck H, Hornig M, Hickey WF, Lipkin WI (2000). Microglial activation and neuronal apoptosis in Bornavirus infected neonatal Lewis rats. Brain Pathol 10:260–272.

    PubMed  Google Scholar 

  • Yamashita K, Kataoka Y, Yamashita YS, Himeno A, Tsutsumi K, Niwa M, Taniyama K (1995). Glial endothelia/nitric oxide system participates in hippocampus CA1 neuronal death of SHRPS following transient forebrain ischemia. Clin Exp Pharmacol Physiol 22(suppl. 1):S227–278.

    Google Scholar 

  • Yamashita K, Kataoka Y, Sakurai-Yamashita Y, Shigematsu K, Himeno A, Niwa M, Taniyama K (2000). Involvement of glial endothelin/nitric oxide in delayed neuronal death of rat hippocampus after transient forebrain ischemia. Cell Mol Neurobiol 20:541–551.

    PubMed  CAS  Google Scholar 

  • Yanamoto H, Hashimoto N, Nagata I, Kikuchi H (1998). Infarct tolerance against temporary focal ischemia following spreading depression in rat brain. Brain Res 784:239–249.

    PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998). Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Nall Acad Sci USA 95:15769–15774.

    CAS  Google Scholar 

  • Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999). A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500.

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M, Powers C (1997). Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion. Brain Res 744:189–198.

    PubMed  CAS  Google Scholar 

  • Zielasek J, Hartung HP (1996). Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–222.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoll, G., Jander, S., Schroeter, M. (2002). Microglia and Macrophage Responses in Cerebral Ischemia. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics