Skip to main content

Microglia as a Source and Target of Cytokine Activities in the Brain

  • Chapter

Abstract

Cytokines are regulatory proteins serving cellular communication. Released for auto- and paracrine short-distance signaling, membrane-associated for cell-cell interaction, or being distributed through body fluids to carry biological information to remote targets, these small proteins serve a variety of functions relating to the growth, survival, differentiation or the activities of virtually every cell type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Immune responses in the nervous system. Oxford: BIOS Scientific Publishers.

    Google Scholar 

  2. Cytokines and the CNS. Boca Raton: CRC Press.

    Google Scholar 

  3. Psychoneuroimmunology. San Diego: Academic Press.

    Google Scholar 

  4. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143–150.

    Article  PubMed  CAS  Google Scholar 

  5. Akbar AN, Lord JM, Salmon M (2000) IFN-alpha and IFN-beta: a link between immune memory and chronic inflammation. Immunol Today 21: 337–342.

    Article  PubMed  CAS  Google Scholar 

  6. Akira S (2000) The role of IL-18 in innate immunity. Curr Opin Immunol 12: 59–63.

    Article  PubMed  CAS  Google Scholar 

  7. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21: 383–421.

    Article  PubMed  CAS  Google Scholar 

  8. Alheim K, Bartfai T (1998) The interleukin-1 system: receptors, ligands, and ICE in the brain and their involvement in the fever response. Ann N Y Acad Sci 840: 51–58.

    Article  PubMed  CAS  Google Scholar 

  9. Aloisi F, Penna G, Cerase J, Menendez IB, Adorini L (1997) IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159: 1604–1612.

    PubMed  CAS  Google Scholar 

  10. Aloisi F, Serafini B, Adorini L (2000) Glia-T cell dialogue. J N euroimmunol 107: 111–17.

    Article  CAS  Google Scholar 

  11. Angstwurm K, Freyer D, Dirnagl U, Hanisch UK, Schumann RR, Einhaupl KM, Weber JR (1998) Tumour necrosis factor alpha induces only minor inflammatory changes in the central nervous system, but augments experimental meningitis. Neuroscience 86: 627–634.

    Article  PubMed  CAS  Google Scholar 

  12. Antel JP, Becher B, Owens T (1996) Immunotherapy for multiple sclerosis: from theory to practice. Nat Med 2: 1074–1075.

    Article  PubMed  CAS  Google Scholar 

  13. Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 600: 49–55.

    Article  PubMed  CAS  Google Scholar 

  14. Araujo DM, Cotman CW (1995) Differential effects of interleukin-1 beta and interleukin-2 on glia and hippocampal neurons in culture. Int J Dev Neurosci 13: 201–212.

    Article  PubMed  CAS  Google Scholar 

  15. Asensio VC, Campbell IL (1999) Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22: 504–512.

    Article  PubMed  CAS  Google Scholar 

  16. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281: nos.

    Google Scholar 

  17. Ashkenazi Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11: 255–260.

    Article  PubMed  CAS  Google Scholar 

  18. Badie B, Schartner J, Vorpahl J, Preston K (2000) Interferon-gamma induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro. Exp Neurol 162: 290–296.

    Article  PubMed  CAS  Google Scholar 

  19. Balasingam V, Dickson K, Brade A, Yong VW (1996) Astrocyte reactivity in neonatal mice: apparent dependence on the presence of reactive microglia/macrophages. Glia 18: 11–26.

    Article  PubMed  CAS  Google Scholar 

  20. Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14: 846–856.

    PubMed  CAS  Google Scholar 

  21. Balasingam V, Yong VW (1996) Attenuation of astroglial reactivity by interleukin-10. J Neurosci 16: 2945–2955.

    PubMed  CAS  Google Scholar 

  22. Banks WA, Kastin AJ (1992) The interleukins-1 alpha, -1 beta, and -2 do not acutely disrupt the murine blood-brain barrier. Int J Immunopharmacol 14: 629–636.

    Article  PubMed  CAS  Google Scholar 

  23. Banks WA, Kastin AJ, Gutierrez EG (1993) Interleukin-1 alpha in blood has direct access to cortical brain cells. Neurosci Lett 163: 41–44.

    Article  PubMed  CAS  Google Scholar 

  24. Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179: 53–56.

    Article  PubMed  CAS  Google Scholar 

  25. Banks WA, Plotkin SR, Kastin AJ (1995) Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 2: 161–165.

    Article  PubMed  CAS  Google Scholar 

  26. Banks WA, Kastin AJ (1997) Relative contributions of peripheral and central sources to levels of IL-1 alpha in the cerebral cortex of mice: assessment with species-specific enzyme immunoassays. J Neuroimmunol 79: 22–28.

    Article  PubMed  CAS  Google Scholar 

  27. Banks WA, Ortiz L, Plotkin SR, Kastin AJ (1991) Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 259: 988–996.

    PubMed  CAS  Google Scholar 

  28. Bazan JF, Timans JC, Kastelein RA (1996) A newly defined interleukin-1? Nature 379: 591–591.

    Article  PubMed  CAS  Google Scholar 

  29. Becher B, Prat A, Antel JP (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29: 293–304.

    Article  PubMed  CAS  Google Scholar 

  30. Berkenbosch F, de Goeij DE, del Rey AD, Besedovsky HO (1989) Neuroendocrine, sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology 50: 570–576.

    Article  PubMed  CAS  Google Scholar 

  31. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H (1987) Corticotropinreleasing factor-producing neurons in the rat activated by interleukin-1. Science 238: 524–526.

    Article  PubMed  CAS  Google Scholar 

  32. Besedovsky HO, del Rey A. (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17: 64–102.

    PubMed  CAS  Google Scholar 

  33. Besedovsky HO, del Rey A. (2001) Cytokines as mediators of central and peripheral immune-neuroendocrine interactions. In: Psychoneuroimmunology (Ader R, Felten DL, Cohen N, eds), pp 1–17. San Diego: Academic Press.

    Google Scholar 

  34. Blasi F, Riccio M, Brogi A, Strazza M, Taddei ML, Romagnoli S, Luddi A, D’Angelo R, Santi S, Costantino-Ceccarini E, Melli M (1999) Constitutive expression of interleukin-1 beta (IL-1 beta) in rat oligodendrocytes. Biol Chem 380: 259–264

    Article  PubMed  CAS  Google Scholar 

  35. Blatteis CM (2000) The afferent signalling of fever. J Phvsiol 526 Pt 3. 470

    CAS  Google Scholar 

  36. Blume AJ, Vitek MP (1989) Focusing on IL-1-promotion of beta-amyloid precursor protein synthesis as an early event in Alzheimer’s disease. Neurobiol Aging 10: 412–414

    Article  Google Scholar 

  37. Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165: 397–403.

    PubMed  CAS  Google Scholar 

  38. Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12: 2049–2058.

    Article  PubMed  CAS  Google Scholar 

  39. Brockhaus J, Ilschner S, Banati RB, Kettenmann H (1993) Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 13: 4412–4421.

    PubMed  CAS  Google Scholar 

  40. Brogi A, Strazza M, Melli M, Costantino-Ceccarini E (1997) Induction of intracellular ceramide by interleukin-1 beta in oligodendrocvtes. J Cell Biochem 66: 532–541

    Article  PubMed  CAS  Google Scholar 

  41. Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new componment of the IL-1 RI pathway, links IRAK to the IL-1 receptor . Nature Cell Biol 2: 346–351

    Article  PubMed  CAS  Google Scholar 

  42. Cacabelos R, Alvarez XA, Fernandez-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 16: 141–151

    PubMed  CAS  Google Scholar 

  43. Cammer W, Zhang H (1999) Maturation of oligodendrocytes is more sensitive to TNF alpha than is survival of precursors and immature oligodendrocytes. J Neuroimmunol 97: 37–42.

    Article  PubMed  CAS  Google Scholar 

  44. Campbell IL (1998) Transgenic mice and cytokine actions in the brain: bridging the gap between structural and functional neuropathology. Brain Res Brain Res Rev 26: 327–336.

    Article  PubMed  CAS  Google Scholar 

  45. Campbell IL, Chiang CS (1995) Cytokine involvement in central nervous system disease. Implications from transgenic mice. Ann N Y Acad Sci 771: 301–312.

    Article  PubMed  CAS  Google Scholar 

  46. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, Carr DJ, Gold LH, Henriksen SJ, Siggins GR (1999) Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 835: 46–61.

    Article  PubMed  CAS  Google Scholar 

  47. Carlson NG, Wieggel WA, Chen J, Bacchi A, Rogers SW, Gahring LC (1999) Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163: 3963–3968.

    PubMed  CAS  Google Scholar 

  48. Carr DJ, Campbell IL (1999) Transgenic expression of interleukin-6 in the central nervous system confers protection against acute herpes simplex virus type-1 infection. J Neurovirol 5: 449–457.

    Article  PubMed  CAS  Google Scholar 

  49. Carrie A, Jun L, Bienvenu T, Vinet MC, McDonell N, Couvert P, Zemni R, Cardona A, Van Buggenhout G, Frints S, Hamel B, Moraine C, Ropers HH, Strom T., Howell GR, Whittaker A, Ross MT, Kahn A, Fryns JP, Beldjord C, Marynen P, Chelly J. (1999) A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nature Genetics 23: 25–31.

    PubMed  CAS  Google Scholar 

  50. Cartmell T, Poole S, Turnbull AV, Rothwell NJ, Luheshi GN (2000) Circulating interleukin-6 mediates the febrile response to localised inflammation in rats. J Physiol 526 Pt 3: 653–661.

    Article  PubMed  CAS  Google Scholar 

  51. Cartmell T, Luheshi GN, Rothwell NJ (1999) Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J Physiol Lond 518: 585–594.

    Article  PubMed  CAS  Google Scholar 

  52. Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48: 445–453.

    Article  PubMed  CAS  Google Scholar 

  53. Chao CC, Molitor TW, Hu S (1993) Neuroprotective role of IL-4 against activated microglia. J Immunol 151: 1473–1481.

    PubMed  CAS  Google Scholar 

  54. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. NEU-RON 12: 139–153.

    Article  CAS  Google Scholar 

  55. Conti B, Jahng JW, Tinti C, Son JH, Joh TH (1997) Induction of interferon-gamma inducing factor in the adrenal cortex. J Biol Chem 272: 2035–2037.

    Article  PubMed  CAS  Google Scholar 

  56. Conti B, Park LC, Calingasan NY, Kim Y, Kim H, Bae Y, Gibson GE, Joh TH (1999) Cultures of astrocytes and microglia express interleukin 18. Mol Brain Res 67: 46–52.

    Article  PubMed  CAS  Google Scholar 

  57. Cooper NR, Bradt BM, O’Barr S, Yu JX (2000b) Focal inflammation in the brain: role in Alzheimer’s disease. Immunol Res 21: 159–165.

    Article  PubMed  CAS  Google Scholar 

  58. Cooper NR, Kalaria RN, McGeer PL, Rogers J (2000a) Key issues in Alzheimers disease inflammation. Neurobiol Aging 21: 451–453.

    Article  PubMed  CAS  Google Scholar 

  59. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258–264.

    Article  PubMed  CAS  Google Scholar 

  60. Culhane AC, Hall MD, Rothwell NJ, Luheshi GN (1998) Cloning of rat brain interleukin18 cDNA. Mol Psychiatry 3: 362–366.

    Article  PubMed  CAS  Google Scholar 

  61. D’Souza S, Alinauskas K, McCrea E, Goodyer C, Antel JP (1995) Differential susceptibility of human CNS-derived cell populations to TNF-dependent and independent immune-mediated injury. J Neurosci 15: 7293–7300.

    PubMed  Google Scholar 

  62. Das S, Potter H (1995) Expression of the Alzheimer amyloid-promoting factor anticnymotrypsin is induced in human astrocytes by IL-1. Neuron 14: 447–456.

    Article  PubMed  CAS  Google Scholar 

  63. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18: 143–150.

    Article  PubMed  Google Scholar 

  64. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7: 75–83.

    Article  PubMed  CAS  Google Scholar 

  65. Dinarello CA (1997c) Blocking interleukin-1 and tumor necrosis factor in disease. Eur Cytokine Netw 8: 294–296.

    PubMed  CAS  Google Scholar 

  66. Dinarello CA (1997d) Induction of interleukin-1 and interleukin-1 receptor antagonist. Semin Oncol 24: S9–S9.

    PubMed  CAS  Google Scholar 

  67. Dinarello CA (1997a) Interleukin-1. Cytokine Growth Factor Rev 8: 253–265.

    Article  PubMed  CAS  Google Scholar 

  68. Dinarello CA (1997b) Role of pro- and anti-inflammatory cytokines during inflammation: experimental and clinical findings. J Biol Regul Homeost Agents 11: 91–103.

    PubMed  CAS  Google Scholar 

  69. Dinarello CA (1998b) Interleukin-1. In: The cytokine handbook (Thomson A, ed), pp 35–72. San Diego: Academic Press.

    Google Scholar 

  70. Dinarello CA (1998a) Interleukin-1, interleukin-1 receptors and interleukin-1 antagonist. Intern Rev Immunol 16: 457–499.

    Article  CAS  Google Scholar 

  71. Dinarello CA (1999b) IL-18: A TH 1-inducing, proinflammatory cytokine and a new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.

    Article  PubMed  CAS  Google Scholar 

  72. Dinarello CA (1999a) Interleukin-18. Methods 19: 121–132.

    Article  CAS  Google Scholar 

  73. Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Muhl H, Yoon DY, Reznikov LL, Kim SH, Rubinstein M (1998) Overview of interleukin-18: more than an interferon-gamma inducing factor . J Leukoc Biol 63: 658–664.

    PubMed  CAS  Google Scholar 

  74. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22: 391–397.

    Article  PubMed  CAS  Google Scholar 

  75. Dore S, Kar S, Zheng WH, Quirion R (2000) Rediscovering good old friend IGF-I in the new millenium: possible usefulness in Alzheimer’s disease and stroke. Pharm Acta Helv 74: 273–280.

    Article  PubMed  CAS  Google Scholar 

  76. Draheim HJ, Prinz M, Weber JR, Weiser T, Kettenmann H, Hanisch UK (1999) Induction of K+ channels in mouse brain microglia: cells acquire responsiveness to pneumococcal cell wall components during late development. Neuroscience 89: 1379–1390.

    Article  PubMed  CAS  Google Scholar 

  77. Dunn AJ, Wang J, Ando T (1999) Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol 461: 117–127.

    Article  PubMed  CAS  Google Scholar 

  78. Durum S-K, Muegge K (1997) Contemporary immunology: cytokine knockouts. Totowa: Humunan Press .

    Google Scholar 

  79. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54: 15–36.

    Article  PubMed  CAS  Google Scholar 

  80. Elkabes S, DiCicco BE, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16: 2508–2521.

    PubMed  CAS  Google Scholar 

  81. Fassbender K, Schneider S, Bertsch T, Schlueter D, Fatar M, Ragoschke A, Kuhl S, Kischka U, Hennerici M (2000) Temporal profile of release of interleukin-1 beta in neurotrauma. Neurosci Lett 284: 135–138.

    Article  PubMed  CAS  Google Scholar 

  82. Fassbender K, Mielke O, Bertsch T, Muehlhauser F, Hennerici M, Kurimoto M, Rossol S (1999) Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 53: 1104–1106.

    Article  PubMed  CAS  Google Scholar 

  83. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185: 579–582.

    Article  PubMed  CAS  Google Scholar 

  84. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein cascade that results in the phopshorylation of hsp27. Cell 78: 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  85. Gabay C, Smith JMF, Eidlen D, Arend WP (1997) Interleukin 1 receptor antagonist (IL-1R a) is an acute-phase protein. J Clin Invest 99: 2930–2940.

    Article  PubMed  CAS  Google Scholar 

  86. Gay NJ, Keith F (1991) Drosophila Toll and IL-1 receptor. Nature 351: 355–356.

    Article  PubMed  CAS  Google Scholar 

  87. Gebicke-Haerter PJ, Appel K, Taylor GD, Schobert A, Rich IN, Northofft H, Berger M (1994) Rat microglial interleukin-3. J Neuroimmunol 50: 203–214.

    Article  PubMed  CAS  Google Scholar 

  88. Gendelman HE, Tardieu M (1994) Macrophages/microglia and the pathophysiology of CNS injuries in AIDS. J Leukoc Biol 56: 387–388.

    PubMed  CAS  Google Scholar 

  89. Gillespie MT, Horwood NJ (1998) Interleukin-18: Perspectives on the newest interleukin. Cytokine Growth Factor Rev 9: 109–116.

    Article  PubMed  CAS  Google Scholar 

  90. Gingrich MB, Traynelis SF (2000) Serine proteases and brain dam. Trends Neurosci 23: 399–407.

    Article  PubMed  CAS  Google Scholar 

  91. Giulian D (1993) Reactive glia as rivals in regulating neuronal survival. Glia 7: 102–110.

    Article  PubMed  CAS  Google Scholar 

  92. Giulian D (1995) Microglia and neuronal dysfunction. In: Neuroglia (Kettenmann H, Ransom BR, eds), pp 671–684. New York: Oxford University Press.

    Google Scholar 

  93. Giulian D, Li J, Leara B, Keenen C (1994b) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25: 227–233.

    Article  PubMed  CAS  Google Scholar 

  94. Giulian D, Li J, Li X, George J, Rutecki PA (1994a) The impact of microglia-derived cytokines upon gliosis in the CNS. Dey Neurosci 16: 128–136.

    Article  CAS  Google Scholar 

  95. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988c) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8: 2485–2490.

    PubMed  CAS  Google Scholar 

  96. Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988b) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8: 709–714.

    PubMed  CAS  Google Scholar 

  97. Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988a) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8: 709–714.

    PubMed  CAS  Google Scholar 

  98. Glabinski AR, Ransohoff RM (1999) Chemokines and chemokine receptors in CNS pathology. J Neurovirol 5: 3–12.

    Article  PubMed  CAS  Google Scholar 

  99. Gold LH, Heyser CJ, Roberts AJ, Henriksen SJ, Steffensen SC, Siggms UR, Bellinger RR, Chiang CS, Powell HC, Masliah E, Campbell IL (1996) Behavioral and neurophysiological effects of CNS expression of cytokines in transgenic mice. Adv Exp Med Biol 402: 199–205.

    Article  PubMed  CAS  Google Scholar 

  100. Graeber MB, Lopez-Redondo F, Ikoma E, Ishikawa M, Imai Y, Nakajima K, Kreutzberg GW, Kohsaka S (1998) The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res 813: 241–253.

    Article  PubMed  CAS  Google Scholar 

  101. Grilli M, Goffi F, Memo M, Spano P (1996) Interleukin-1 beta and glutamate activate me NF-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J Biol Chem 271: 15002–15007.

    Article  PubMed  CAS  Google Scholar 

  102. Gu C, Casaccia-Bonnefil P, Srinivasan A, Chao MV (1999) Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci 19: 3043–3049.

    PubMed  CAS  Google Scholar 

  103. Gutierrez EG, Banks WA, Kastin AJ (1993) Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 47: 169–176.

    Article  PubMed  CAS  Google Scholar 

  104. Gutierrez EG, Banks WA, Kastin AJ (1994) Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J Neuroimmunol 55: 153–160.

    Article  PubMed  CAS  Google Scholar 

  105. Hanisch UK (2001) Effects of interleukin-2 and interferons on the nervous system. in: Rsychoneuroimmunology (Ader R, Felten DL, Cohen N, eds), pp 585–631. San Diego: Academic Press.

    Google Scholar 

  106. Hanisch UK, Lyons SA, Prinz M, Nolte C, Weber JR, Kettenmann H, Kirchhoff F (1997a) Mouse brain microglia express interleukin-15 and its multimeric receptor complex functionally coupled to Janus kinase activity. J Biol Chem 272: 28853–28860.

    Article  PubMed  CAS  Google Scholar 

  107. Hanisch UK, Neuhaus J, Quirion R, Kettenmann H (1996b) Neurotoxicity induced by interleukin-2: involvement of infiltrating immune cells. Synapse 24: 104–114.

    Article  PubMed  CAS  Google Scholar 

  108. Hanisch UK, Neuhaus J, Rowe W, van Rossum D, Moller T, Kettenmann H, Quirion R (1997b) Neurotoxic consequences of central long-term administration of interleukin2 in rats. Neuroscience 79: 799–818.

    Article  PubMed  CAS  Google Scholar 

  109. Hanisch UK, Quirion R (1995) Interleukin-2 as a neuroregulatory cytokine. Brain Res Brain Res Rev 21: 246–284.

    Article  PubMed  CAS  Google Scholar 

  110. Hanisch UK, Rowe W, Sharma S, Meaney MJ, Quirion R (1994) Hypothalamic-pituitaryadrenal activity during chronic central administration of interleukin-2. Endocrinology 135: 2465–2472.

    Article  PubMed  CAS  Google Scholar 

  111. Hanisch UK, Rowe W, van Rossum D, Meaney MJ, Quirion R (1996a) Phasic hyperactivity of the HPA axis resulting from chronic central IL-2 administration. Neuroreport 7: 2883–2888.

    Article  PubMed  CAS  Google Scholar 

  112. Hanisch UK, Seto D, Quirion R (1993) Modulation of hippocampal acetylcholine release: a potent central action of interleukin-2. J Neurosci 13: 3368–3374.

    PubMed  CAS  Google Scholar 

  113. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3 CR 1-expressing microglia. Proc Natl Acad Sci U S A 95: 10896–10901.

    Article  PubMed  CAS  Google Scholar 

  114. Hartung HP, Jung S, Stoll G, Zielasek J, Schmidt B, Archelos JJ, Toyka KV (1992) Inflammatory mediators in demyelinating disorders of the CNS and PNS. J Neuroimmunol 40: 197–210.

    Article  PubMed  CAS  Google Scholar 

  115. Hays SJ (1998) Therapeutic approaches to the treatment of neuroinflammatory diseases. Curr Pharm Des 4: 335–348.

    PubMed  CAS  Google Scholar 

  116. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000) Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75: 965–972.

    Article  PubMed  CAS  Google Scholar 

  117. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284: 1313–1318.

    Article  PubMed  CAS  Google Scholar 

  118. Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 18: 83–88.

    Article  PubMed  CAS  Google Scholar 

  119. Kanakaraj P, Ngo K, Wu Y, Angulo A, Ghazal P, Harris CA, Siekierka JJ, Peterson PA, Fung-Leung WP (1999) Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice. J Exp Med 189: 1129–1138.

    Article  PubMed  CAS  Google Scholar 

  120. Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci U S A 88: 2961–2965.

    Article  PubMed  CAS  Google Scholar 

  121. Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181: 323–326.

    Article  PubMed  CAS  Google Scholar 

  122. Kita T, Tanaka T, Tanaka N, Kinoshita Y (2000) The role of tumor necrosis factor-alpha in diffuse axonal injury following fluid-percussive brain injury in rats [In Process Citation]. Int J Legal Med 113: 221–228.

    Article  PubMed  CAS  Google Scholar 

  123. Kohno K, Kurimoto M (1998) Interleukin 18, a cytokine which resembles IL-1 structurally and IL-12 functionally but exerts its effect independently of both. Clin Immunol Immunopathol 86: 11–15.

    Article  PubMed  CAS  Google Scholar 

  124. Kojima H, Takeuchi M, Ohta T, Nishida Y, Arai N, Ikeda M, Ikegami H, Kurimoto M (1998) Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 244: 183–186.

    Article  PubMed  CAS  Google Scholar 

  125. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19: 312–318.

    Article  PubMed  CAS  Google Scholar 

  126. Kumar S, McDonnell PC, Lehr R, Tierney L, Tzimas MN, Griswold DE, Capper EA, Talsinger R, Wells GI, Doyle ML, Young PR (2000) Identification and initial characterization of four novel members of the interleukin-1 familiy. J Biol Chem 275: 10308–10314.

    Article  PubMed  CAS  Google Scholar 

  127. Lapchak PA, Araujo DM, Beck KD, Finch CE, Johnson SA, Hefti F (1993) BDNF and trkB mRNA expression in the hippocampal formation of aging rats. Neurobiol Aging 14: 121–126.

    Article  PubMed  CAS  Google Scholar 

  128. Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigenlike immunoreactivity) in the rat brain. Neuroscience 44: 173–184.

    Article  PubMed  CAS  Google Scholar 

  129. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW (1993) Cytokine production by human fetal microglia and astrocytes. J Immunol 150: 2659–2667.

    PubMed  CAS  Google Scholar 

  130. Licinio JWML (1997) Pathways and mechanism for cytokine signaling of the central nervous system. J Clin Invest 100: 2941–2947.

    Article  PubMed  CAS  Google Scholar 

  131. Liu JS, Amaral TD, Brosnan CF, Lee SC (1998) IFNs are critical regulators of IL-1 receptor antagonist and IL-1 expression in human microglia. J Immunol 161: 1989–1996.

    PubMed  CAS  Google Scholar 

  132. Liu JS, John GR, Sikora A, Lee SC, Brosnan CF (2000) Modulation of interleukin-1beta and tumor necrosis factor alpha signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 20: 5292–5299.

    PubMed  CAS  Google Scholar 

  133. Locati M, Murphy PM (1999) Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu Rev Med 50: 425–440.

    Article  PubMed  CAS  Google Scholar 

  134. Loddick SA, Liu C, Takao T, Hashimoto K, De Souza EB (1998) Interleukin-1 receptors: Cloning studies and role in central nervous system disorders. Brain Res Rev 26: 306–319.

    Article  PubMed  CAS  Google Scholar 

  135. Luheshi G, Rothwell N (1996) Cytokines and fever. Int Arch Allergy Immunol 109: 301–307.

    Article  PubMed  CAS  Google Scholar 

  136. Luheshi GN, Gardner JD, Rushforth DA, Loudon AS, Rothwell NJ (1999) Leptin actions on food intake and body temperature are mediated by IL-1. Proc Natl Acad Sci USA 96: 7047–7052.

    Article  PubMed  CAS  Google Scholar 

  137. Luk WP, Zhang Y, White TD, Lue FA, Wu C, Jiang CG, Zhang L, Moldofsky H (1999) Adenosine: a mediator of interleukin- 1beta-induced hippocampal synaptic inhibition. T Neurosci 19: 4238–4244.

    CAS  Google Scholar 

  138. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338: 436–445.

    Article  PubMed  CAS  Google Scholar 

  139. Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB (1999) Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163: 1628–1635.

    PubMed  CAS  Google Scholar 

  140. Madigan MC, Sadun AA, Rao NS, Dugel PU, Tenhula WN, Gill PS (1996) Tumor necrosis factor-alpha (TNF-alpha)-induced optic neuropathy in rabbits. Neurol Res 18: 176–184.

    PubMed  CAS  Google Scholar 

  141. Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840: 289–300.

    Article  PubMed  CAS  Google Scholar 

  142. Martino G, Furlan R, Brambilla E, Bergami A, Ruffini F, Gironi M, Poliani PL, Grimaldi LM, Comi G (2000) Cytokines and immunity in multiple sclerosis: the dual signal hypothesis. J Neuroimmunol 109: 3–9.

    Article  PubMed  CAS  Google Scholar 

  143. Matsumoto S, Tsuji-Takayama K, Aizawa Y, Koide K, Takeuchi M, Ohta T, Kurimoto M (1997) Interleukin-18 activates NF-kappaB in murine T helper type 1 cells. Biochem Biophys Res Commun 234: 454–457.

    Article  PubMed  CAS  Google Scholar 

  144. McCann SM, Karanth S, Kamat A, Les DW, Lyson K, Gimeno M, Rettori V (1994b) Induction by cytokines of the pattern of pituitary hormone secretion in infection. Neuroimmunomodulation 1: 2–13.

    Article  PubMed  CAS  Google Scholar 

  145. McCann SM, Kimura M, Karanth S, Yu WH, Rettori V (1997b) Nitric oxide controls the hypothalamic-pituitary response to cytokines. Neuroimmunomodulation 4: 98–106.

    PubMed  CAS  Google Scholar 

  146. McCann SM, Kimura M, Karanth S, Yu WH, Rettori V (1998) Role of nitric oxide in the neuroendocrine responses to cytokines. Ann N Y Acad Sci 840: 174–184.

    Article  PubMed  CAS  Google Scholar 

  147. McCann SM, Lyson K, Karanth S, Gimeno M, Belova N, Kamat A, Rettori V (1994a) Role of cytokines in the endocrine system. Ann N Y Acad Sci 741: 50–63.

    Article  PubMed  CAS  Google Scholar 

  148. McCann SM, Kimura M, Karanth S, Yu WH, Rettori V (1997a) Nitric oxide controls the hypothalamic-pituitary response to cytokines. Neuroimmunomodulation 4: 98–106.

    PubMed  CAS  Google Scholar 

  149. McGeer EG, McGeer PL (1999) Brain inflammation in Alzheimer disease and the therapeutic implications. Curr Pharm Des 5: 821–836.

    PubMed  CAS  Google Scholar 

  150. McGeer PL, McGeer EG (2000) Autotoxicity and Alzheimer disease. Arch Neurol 57: 789–790.

    Article  PubMed  CAS  Google Scholar 

  151. McGeer PL, McGeer EG, Yasojima K (2000) Alzheimer disease and neuroinflammation. J Neural Transm Suppl 59: 53–57.

    PubMed  CAS  Google Scholar 

  152. McInnes IB, Gracie JA, Leung BP, Wei XQ, Liew FY (2000) Interleukin 18: a pleiotropic participant in chronic inflammation. Immunol Today 21: 312–315.

    Article  PubMed  CAS  Google Scholar 

  153. Mennicken F, Maki R, De Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20: 73–78.

    Article  PubMed  CAS  Google Scholar 

  154. Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19: 331–338.

    Article  PubMed  CAS  Google Scholar 

  155. Merrill JE, Scolding NJ (1999) Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease. Neuropathol Appl Neurobiol 25: 435–458.

    Article  PubMed  CAS  Google Scholar 

  156. Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J (2001) Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol 431: 217–227.

    Article  PubMed  CAS  Google Scholar 

  157. Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97: 8075–8080.

    Article  PubMed  CAS  Google Scholar 

  158. Möller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75: 1539–1547.

    Article  PubMed  Google Scholar 

  159. Mrak RE, Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease. J Neuropathol Exp Neurol 59: 471–476.

    PubMed  CAS  Google Scholar 

  160. Mucke L, Eddleston M (1993) Astrocytes in infectious and immune-mediated diseases of the central nervous system. FASEB J 7: 1226–1232.

    PubMed  CAS  Google Scholar 

  161. Nicoll JA, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, Esiri MM, Murray LS, Dewar D, Love S, Moss T, Griffin WS (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann Neurol 47: 365–368.

    Article  PubMed  CAS  Google Scholar 

  162. Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, Kume T, Akaike A, Satoh M (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 429: 167–172.

    Article  PubMed  CAS  Google Scholar 

  163. Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17: 877–885.

    Article  PubMed  CAS  Google Scholar 

  164. O’Connor JJ, Coogan AN (1999) Actions of the pro-inflammatory cytokine IL-1 beta on central synaptic transmission. Exp Physiol 84: 601–614.

    Article  PubMed  Google Scholar 

  165. O’Neill LAJ, Dinarello CA (2000) The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today 21: 206–209

    Article  PubMed  Google Scholar 

  166. O’Neill LAJ, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: Ancient signaling machinery in mamals, insects and plants. J Leukoc Biol 63. 650–657.

    PubMed  Google Scholar 

  167. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K, Fokuda S, Kurimoto M (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 379: 88–91.

    Article  Google Scholar 

  168. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715–725.

    Article  PubMed  CAS  Google Scholar 

  169. Otero GC, Merrill JE (1994) Cytokine receptors on glial cells. Glia 11: 117–128.

    Article  PubMed  CAS  Google Scholar 

  170. Otero GC, Merrill JE (1997) Response of human oligodendrocytes to interleukin-2. Brain Behav Immun 11: 24–38.

    Article  PubMed  CAS  Google Scholar 

  171. Pan W, Banks WA, Kennedy MK, Gutierrez EG, Kastin AJ (1996) Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha. Am J Physiol 271: E636–E642.

    PubMed  CAS  Google Scholar 

  172. Petitto JM, Huang Z, Raizada MK, Rinker CM, McCarthy DB (1998) Molecular cloning of the cDNA coding sequence of IL-2 receptor-gamma (gamma) from human and murine forebrain: expression in the hippocampus in situ and by brain cells in vitro. Brain Res Mol Brain Res 53: 152–162.

    Article  PubMed  CAS  Google Scholar 

  173. Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 56: 441–446.

    Article  PubMed  CAS  Google Scholar 

  174. Prinz M, Hanisch UK (1999) Murine microglial cells produce and respond to interleukin18. J Neurochem 72: 2215–2218.

    Article  PubMed  CAS  Google Scholar 

  175. Prinz M, Hanisch UK, Kettenmann H, Kirchhoff F (1998) Alternative splicing of mouse IL15 is due to the use of an internal splice site in exon 5. Mol Brain Res 63: 155–162.

    Article  PubMed  CAS  Google Scholar 

  176. Prinz M, Kann O, Draheim HJ, Schumann RR, Kettenmann H, Weber JR, Hanisch UK (1999) Microglial activation by components of Gram-positive and -negative bacteria: Distinct and common routes to the induction of ion channels and cytokines. J Neuropathol Exp Neurol 58: 1078–1089.

    Article  PubMed  CAS  Google Scholar 

  177. Raber J, Sorg O, Horn TF, Yu N, Koob GF, Campbell IL, Bloom FE (1998) Inflammatory cytokines: putative regulators of neuronal and neuro- endocrine function. Brain Res Brain Res Rev 26: 320–326.

    Article  PubMed  CAS  Google Scholar 

  178. Raine CS, Bonetti B, Cannella B (1998) Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev Neurol (Paris) 154: 577–585

    CAS  Google Scholar 

  179. Raivich G, Bluethmann H, Kreutzberg GW (1996) Signaling molecules and neuroglial activation in the injured central nervous system. Keio J Med 45: 239–247.

    Article  PubMed  CAS  Google Scholar 

  180. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999a) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30: 77–105.

    Article  PubMed  CAS  Google Scholar 

  181. Raivich G, Jones LL, Werner A, Bluthmann H, Doetschmann T, Kreutzberg GW (1999b) Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. Acta Neurochir Suppl (Wien) 73: 21–30.

    CAS  Google Scholar 

  182. Ren L, Lubrich B, Biber K, Gebicke-Haerter PJ (1999) Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Brain Res Mol Brain Res 65: 198–205.

    Article  PubMed  CAS  Google Scholar 

  183. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Thl cytokines. J Immunol 154: 944–953.

    CAS  Google Scholar 

  184. Rogers J, Webster S, Lue LF, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGeer P (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17: 681–686.

    Article  PubMed  CAS  Google Scholar 

  185. Rostworowski M, Balasingam V, Chabot S, Owens T, Yong VW (1997) Astrogliosis in the neonatal and adult murine brain post-trauma: elevation of inflammatory cytokines and the lack of requirement for endogenous interferon-gamma. J Neurosci 17: 3664–3674.

    PubMed  CAS  Google Scholar 

  186. Rothwell N, Allan S, Toulmond S (1997) Perspectives Series: Cytokines and the brain. J Clin Invest 100: 2648–2652

    Article  PubMed  CAS  Google Scholar 

  187. Rothwell N, Allan S, Toulmond S (1997) The role of Interleukin 1 in acute neurodegeneration and stroke: Pathophysiological and therapeutic implications. J Clin Invest 100: 2648–2652.

    Article  PubMed  CAS  Google Scholar 

  188. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18: 130–136.

    Article  PubMed  CAS  Google Scholar 

  189. Rothwell NJ, Luheshi G, Toulmond S (1996) Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacol Ther 69: 85–95.

    Article  PubMed  CAS  Google Scholar 

  190. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23: 618–625.

    Article  PubMed  CAS  Google Scholar 

  191. Sanz JM, Di Virgilio F (2000) Kinetics and mechanism of ATP-dependent IL-β release from microglial cells. J Immunol 164: 4893–4898.

    PubMed  CAS  Google Scholar 

  192. Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72: 1466–1471.

    Article  PubMed  CAS  Google Scholar 

  193. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO (1998) A neuromodulatory role of interleukin-β in the hippocampus. Proc Natl Acad Sci USA 95: 7778–7783.

    Article  PubMed  CAS  Google Scholar 

  194. Schubert P, Morino T, Miyazaki H, Ogata T, Nakamura Y, Marchini C, Ferroni S (2000) Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann N Y Acad Sci 903: 24–33.

    Article  PubMed  CAS  Google Scholar 

  195. Schwaiger FW, Hager G, Raivich G, Kreutzberg GW (1998) Cellular activation in neuroregeneration. Prog Brain Res 117: 197–210.

    Article  PubMed  CAS  Google Scholar 

  196. Seilhean D, Kobayashi K, He Y, Uchihara T, Rosenblum O, Katlama C, Bricaire F, Duyckaerts C, Hauw JJ (1997) Tumor necrosis factor-alpha, microglia and astrocytes in AIDS dementia complex. Acta Neuropathol (Berl) 93: 508–517.

    Article  CAS  Google Scholar 

  197. Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF (1991b) Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol 147: 1522–1529.

    PubMed  CAS  Google Scholar 

  198. Selmaj K, Shafit-Zagardo B, Aquino DA, Farooq M, Raine CS, Norton WT, Brosnan CF (1991a) Tumor necrosis factor-induced proliferation of astrocytes from mature brain is associated with down-regulation of glial fibrillary acidic protein mRNA. J Neurochem 57: 823–830.

    Article  PubMed  CAS  Google Scholar 

  199. Selmaj KW, Farooq M, Norton WT, Raine CS, Brosnan CF (1990) Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J Immunol 144: 129–135.

    PubMed  CAS  Google Scholar 

  200. Seto D, Kar S, Quirion R (1997) Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices. Br T Pharmacol 120: 1151–1157.

    Article  CAS  Google Scholar 

  201. Shadiack AM, Hart RP, Carlson CD, Jonakait GM (1993) Interleukin-1 induces substance P in sympathetic ganglia through the induction of leukemia inhibitory factor (LIF). J Neurosci 13: 2601–2609.

    PubMed  CAS  Google Scholar 

  202. Shadiack AM, Vaccariello SA, Sun Y, Zigmond RE (1998) Nerve growth factor inhibits sympathetic neurons’ response to an injury cytokine. Proc Natl Acad Sci USA 95: 7727–7730.

    Article  PubMed  CAS  Google Scholar 

  203. Sheng JG, Griffin WS, Royston MC, Mrak RE (1998) Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease. Neuropathol Appl Neurobiol 24: 278–283.

    Article  PubMed  CAS  Google Scholar 

  204. Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ, Griffin WS (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17: 761–776

    Article  PubMed  CAS  Google Scholar 

  205. Sheng JG, Mrak RE, Griffin WS (1995) Microglial interleukin-1 alpha expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution. Neuropathol Appl Neurobiol 21: 290–301.

    Article  PubMed  CAS  Google Scholar 

  206. Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE (2000) Four new members expand the interleukin-1 superfamily. J Biol Chem 275: 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  207. Smith EM, Cadet P, Stefano GB, Opp MR, Hughes TK, Jr. (1999) IL-10 as a mediator in the HPA axis and brain. J Neuroimmunol 100: 140–148.

    Article  PubMed  CAS  Google Scholar 

  208. Smith ME, van-der MK, Somera FP (1998) Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 54: 68–78.

    Article  PubMed  CAS  Google Scholar 

  209. Stalder AK, Pagenstecher A, Yu NC, Kincaid C, Chiang CS, Hobbs MV, Bloom FE, Campbell IL (1997) Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J Immunol 159: 1344–1351.

    PubMed  CAS  Google Scholar 

  210. Sternberg EM (1997) Neural-immune interactions in health and disease. J Clin Invest 100: 2641–2647.

    Article  PubMed  CAS  Google Scholar 

  211. Stohwasser R, Giesebrecht J, Kraft R, Müller E-C, Häusler KG, Kettenmann H, Hanisch UK, Kloetzel P-M (2000) Biochemical analysis of proteasomes from microglia: Induction of immunoproteasomes by interferon-gamma and lipopolysaccharide. Glia 29: 355–365.

    Article  PubMed  CAS  Google Scholar 

  212. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58: 233–247.

    Article  PubMed  CAS  Google Scholar 

  213. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56: 149–171.

    Article  PubMed  CAS  Google Scholar 

  214. Stoll G, Jander S, Schroeter M (2000) Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl 59: 81–89.

    PubMed  CAS  Google Scholar 

  215. Streit WJ (1994) The role of microglia in regeneration. Eur Arch Otorhinolaryngol Suppl S69–570.

    Google Scholar 

  216. Streit WJ (2000) Microglial response to brain injury: a brief synopsis. Toxicol Pathol 28: 28–30.

    Article  PubMed  CAS  Google Scholar 

  217. Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL (2000b) Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 61: 10–20.

    Article  PubMed  CAS  Google Scholar 

  218. Streit WJ, Walter SA, Pennel NA (2000a) Reactive microgliosis. Prog Neurobiol 57: 563–581.

    Article  Google Scholar 

  219. Suzumura A, Sawada M, Itoh Y, Marunouchi T (1994) Interleukin-4 induces proliferation and activation of microglia but suppresses their induction of class II major histocompatibility complex antigen expression. J Neuroimmunol 53: 209–218.

    Article  PubMed  CAS  Google Scholar 

  220. Suzumura A, Sawada M, Takayanagi T (1998) Production of interleukin-12 and expression of its receptors by murine microglia. Brain Res 787: 139–142.

    Article  PubMed  CAS  Google Scholar 

  221. Szczepanik AM, Funes S, Petko W, Ringheim GE (2001) IL-4, IL-10 and IL-13 modulate Abeta(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 113: 49–62

    Article  PubMed  CAS  Google Scholar 

  222. Takahashi S, Kapas L, Fang J, Krueger JM (1999) Somnogenic relationships between tumor necrosis factor and interleukin-1. Am J Physiol 276: R1132 –R1140

    Google Scholar 

  223. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999) Microglial activation resulting from CD40-CD40L interaction after beta- amyloid stimulation. Science 286: 2352–2355.

    Article  PubMed  CAS  Google Scholar 

  224. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31: 42–57.

    Article  PubMed  CAS  Google Scholar 

  225. Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE (1998) Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1 Rrp l leads to activation of signaling pathways similar to those used by interleukin-1. J Interferon Cytokine Res 18: 1077–1088.

    Article  PubMed  CAS  Google Scholar 

  226. Torres C, Aranguez I, Rubio N (1995) Expression of interferon-gamma receptors on murine oligodendrocytes and its regulation by cytokines and mitogens. Immunology 86: 250–255.

    PubMed  CAS  Google Scholar 

  227. Tran EH, Prince EN, Owens T (2000) IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol 164: 2759–2768.

    PubMed  CAS  Google Scholar 

  228. Tringali G, Dello-Russo C, Preziosi P, Navarra P (1998) Hypothalamic interleukin-1 in nhvsiologv and nathology. Toxicol Lett 102: 295–299.

    Article  PubMed  Google Scholar 

  229. Tsuji-Takayama K, Aizawa Y, Okamoto I, Kojima H, Koide K, Takeuchi M, Ikegami H, Ohta T, Kurimoto M (1999) Interleukin-18 induces interferon-gamma production through NF-kappaB and NFAT activation in murine T helper type 1 cells. Cell Immunol 196: 41–50.

    Article  PubMed  CAS  Google Scholar 

  230. Tsuji-Takayama K, Matsumoto S, Koide K, Takeuchi M, Ikeda M, Ohta T, Kurimoto M (1997) Interleukin-18 induces activation and association of p56(lck) and MAPK in a murine TH1 clone. Biochem Biophys Res Commun 237: 126–130.

    Article  PubMed  CAS  Google Scholar 

  231. Vandenabeele P, Fiers W (1991) Is amyloidogenesis during Alzheimer’s disease due to an IL-1-/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today 12: 217–219.

    Article  PubMed  CAS  Google Scholar 

  232. Vilcek J (1998) The cytokines: an overview. In: The cytokine handbook (Thomson A, ed), pp 1–20. San Diego: Academic Press.

    Google Scholar 

  233. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: Neuromodulators in normal brain? J Neurochem 74: 457–471.

    Article  PubMed  CAS  Google Scholar 

  234. Waguespack PJ, Banks WA, Kastin AJ (1994) Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Res Bull 34: 103–109.

    Article  PubMed  CAS  Google Scholar 

  235. Ware CF, Santee S, Glass A (1998) Tumor necrosis factor-related ligands and receptors. in: The cytokine handbook (Thomson A, ed), pp 549–592. San Diego: Academic Press.

    Google Scholar 

  236. Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-betal (TGF-betal) down- regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95: 8–18.

    Article  PubMed  CAS  Google Scholar 

  237. Wewers MD, Herzyk DJ (1989) Alveolar macrophages diffter trom blood monocytes human IL-lb release. J Immunol 143: 1635–1641.

    PubMed  CAS  Google Scholar 

  238. Wheeler, R.D., Culhane AC, Hall MD, Pickering-Brown S, Rothwell N, Luheshi GN (2000) Detection of the interleukin 18 family in rat brain by RT- PCR. Mol Brain Res 77: 290–293.

    Article  PubMed  CAS  Google Scholar 

  239. Wildbaum G, Youssef S, Grabie N, Karin N (1998) Neutralizing antibodies to IFN-gammainducing factor prevent experimental autoimmune encephalomyelitis. J Immunol 161: 6368–6374.

    PubMed  CAS  Google Scholar 

  240. Woodroofe MN, Sarna GS, Wawda M, Hayes GM, Loughlin AJ, Linker A, Curzner ML (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain following mechnical injury by in vivo microdialysis: Evidence of a role for microglia in cytokine production. J Immunol 33: 227–236.

    CAS  Google Scholar 

  241. Xia MQ, Hyman BT (1999) Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. J Neurovirol 5: 32–41.

    Article  PubMed  CAS  Google Scholar 

  242. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT (1998) Immunohistochemical study the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. Am J Pathol 153: 31–37.

    Article  PubMed  CAS  Google Scholar 

  243. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395: 284–288.

    Article  PubMed  CAS  Google Scholar 

  244. Yao J, Keri JE, Taffs RE, Colton CA (1992) Characterization of interleukin-1 production by microglia in culture. Brain Res 591: 88–93.

    Article  PubMed  CAS  Google Scholar 

  245. Yates SL, Burgess LH, Kocsis-Angle J, Antal JM, Dority MD, Embury PB, Piotrkowski AM, Brunden KR (2000) Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74: 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  246. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1–5.

    PubMed  CAS  Google Scholar 

  247. Zhang M., Tracey KJ (1998) Tumor necrosis factor. In: The cytokine handbook (Thomson A, ed), pp 517–548. San Diego: Academic Press.

    Google Scholar 

  248. Zhang GX, Baker CM, Kolson DL, Rostami AM (2000) Chemokines and chemokine receptors in the pathogenesis of multiple sclerosis. Mult Scler 6: 3–13.

    PubMed  CAS  Google Scholar 

  249. Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29: 305–315.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanisch, UK. (2002). Microglia as a Source and Target of Cytokine Activities in the Brain. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics