Skip to main content

Calcium Signaling in Microglial Cells

  • Chapter
  • 182 Accesses

Abstract

Receptor-mediated changes in the free cytoplasmic Ca2+ concentration ([Ca2+]c) represent one of the major signal transduction pathways by which information from extracellular signals is transferred to intracellular sites. The signal is conveyed by the magnitude, duration and location of the changes in [Ca2+]c, and is usually initiated by the binding of an extracellular signaling molecule / ligand to its plasma membrane receptor. This chapter will provide a brief overview of the basic mechanisms of Ca2+ signaling, describe the available data about microglial [Ca2+]c signals, and discuss current challenges and future directions of this emerging field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Burnstock G (1998). Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145.

    PubMed  CAS  Google Scholar 

  • Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, Doms RW, Gonzalez-Scarano F (1999). Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73:205–213.

    PubMed  CAS  Google Scholar 

  • Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996). CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958.

    PubMed  CAS  Google Scholar 

  • Asensio VC, Campbell IL (1999). Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci 22:504–512.

    PubMed  CAS  Google Scholar 

  • Bader MF, Taupenot L, Ulrich G, Aunis D, Ciesielski-Treska J (1994). Bacterial endotoxin induces [Ca2+]i transients and changes the organization of actin in microglia. Glia 11:336–344.

    PubMed  CAS  Google Scholar 

  • Barritt GJ (1999). Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337:153–169.

    PubMed  CAS  Google Scholar 

  • Berger EA, Murphy PM, Farber JM (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700.

    PubMed  CAS  Google Scholar 

  • Berridge M, Lipp P, Bootman M (1999). Calcium signalling. Curr Biol 9:R157–159.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993). Inositol trisphosphate and calcium signalling. Nature 361:315–325.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1997). Elementary and global aspects of calcium signalling. J Physiol (Lond) 499:291–306.

    CAS  Google Scholar 

  • Beutler B (2000). Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12:20–26.

    PubMed  CAS  Google Scholar 

  • Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999). Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680.

    PubMed  CAS  Google Scholar 

  • Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Harter P (1999a). Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374:309–313.

    PubMed  CAS  Google Scholar 

  • Boddeke EW, Meigel I, Frentzel S, Gourmala NG, Harrison JK, Buttini M, Spleiss O, Gebicke-Harter P (1999b). Cultured rat microglia express functional beta-chemokine receptors. J Neuroimmunol 98:176–184.

    PubMed  CAS  Google Scholar 

  • Boland K, Behrens M, Choi D, Manias K, Perlmutter DH (1996). The serpin-enzyme complex receptor recognizes soluble, nontoxic amyloid-beta peptide but not aggregated, cytotoxic amyloid-beta peptide. J Biol Chem 271:18032–18044.

    PubMed  CAS  Google Scholar 

  • Bootman MD, Berridge MJ (1995). The elemental principles of calcium signaling. Cell 83:675–678.

    PubMed  CAS  Google Scholar 

  • Ciesielski-Treska J, Ulrich G, Taupenot L, Chasserot-Golaz S, Corti A, Aunis D, Bader MF (1998). Chromogranin A induces a neurotoxic phenotype in brain microglial cells. J Biol Chem 273:14339–14346.

    PubMed  CAS  Google Scholar 

  • Clapham DE (1995). Calcium signaling. Cell 80:259–268.

    PubMed  CAS  Google Scholar 

  • Colton CA, Jia M, Li MX, Gilbert DL (1994). K+ modulation of microglial superoxide production: involvement of voltage-gated Ca2+ channels. Am J Physiol 266:C1650–1655.

    PubMed  CAS  Google Scholar 

  • Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407:258–264.

    PubMed  CAS  Google Scholar 

  • Deitmer JW, Verkhratsky AJ, Lohr C (1998). Calcium signalling in glial cells. Cell Calcium 24:405–416.

    PubMed  CAS  Google Scholar 

  • Di Virgilio F, Sanz JM, Chiozzi P, Falzoni S (1999). The P2Z/P2X7 receptor of microglial cells: a novel immunomodulatory receptor. Prog Brain Res 120:355–368.

    PubMed  Google Scholar 

  • Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996). A dual-tropic primary HIV-1 isolate that uses fusin and the betachemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158.

    PubMed  CAS  Google Scholar 

  • Eder C (1998). Ion channels in microglia (brain macrophages). Am J Physiol 275:C327–342.

    PubMed  CAS  Google Scholar 

  • El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996). Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils [see comments]. Nature 382:716–719.

    PubMed  Google Scholar 

  • Fenton MJ, Golenbock DT (1998). LPS-binding proteins and receptors. J Leukoc Biol 64:25–32.

    PubMed  CAS  Google Scholar 

  • Ferrari D, Stroh C, Schulze-Osthoff K (1999). P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem 274:13205–13210.

    PubMed  CAS  Google Scholar 

  • Ferrari D, Wesselborg S, Bauer MKA, Schulze-Osthoff K (1997). Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol 139:1635–1643.

    PubMed  CAS  Google Scholar 

  • Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996). Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539.

    PubMed  CAS  Google Scholar 

  • Gale LM, McColl SR (1999). Chemokines: extracellular messengers for all occasions? Bioessays 21:17–28.

    PubMed  CAS  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995). Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287.

    PubMed  CAS  Google Scholar 

  • Goghari V, Franciosi S, Kim SU, Lee YB, McLarnon JG (2000). Acute application of interleukin-1 beta induces Ca2+ responses in human microglia. Neurosci Lett 281:83–86.

    PubMed  CAS  Google Scholar 

  • Grand RJ, Turnell AS, Grabham PW (1996). Cellular consequences of thrombin-receptor activation. Biochem J 313:353–368.

    PubMed  CAS  Google Scholar 

  • Hahn J, Jung W, Kim N, Uhm DY, Chung S (2000). Characterization and regulation of rat microglial Ca2+ release-activated Ca2+ (CRAC) channel by protein kinases. Glia 31:118–124.

    PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci US A 95:10896–10901.

    CAS  Google Scholar 

  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D (1997). CCR3 and CCR5 are coreceptors for HIV-1 infection of microglia. Nature 385:645–649.

    PubMed  CAS  Google Scholar 

  • Hegg CC, Hu S, Peterson PK, Thayer SA (2000). Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98:191–199.

    PubMed  CAS  Google Scholar 

  • Herms JW, Madlung A, Brown DR, Kretzschmar HA (1997). Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia 21:253–257.

    PubMed  CAS  Google Scholar 

  • Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S, Inoue K, Nakata Y (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem 75:965–972.

    PubMed  CAS  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996). A novel gene ibal in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862.

    PubMed  CAS  Google Scholar 

  • Inoue K, Nakajima K, Morimoto T, Kikuchi Y, Koizumi S, Illes P, Kohsaka S (1998). ATP stimulation of Ca2+-dependent plasminogen release from cultured microglia. Br J Pharmacol 123:1304–1310.

    PubMed  CAS  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998). Microglia-specific localisation of a novel calcium binding protein, Ibal. Brain Res Mol Brain Res 57:1–9.

    PubMed  CAS  Google Scholar 

  • Kong C, Gill BM, Rahimpour R, Xu L, Feldman RD, Xiao Q, McDonald TJ, Taupenot L, Mahata SK, Singh B, O’Connor DT, Kelvin DJ (1998). Secretoneurin and chemoattractant receptor interactions. J Neuroimmunol 88:91–98.

    PubMed  CAS  Google Scholar 

  • Korotzer AR, Whittemore ER, Cotman CW (1995). Differential regulation by beta-amyloid peptides of intracellular free Ca2+ concentration in cultured rat microglia. Eur J Pharmacol 288:125–130.

    PubMed  CAS  Google Scholar 

  • Kostyuk P, Verkhratsky A (1994). Calcium stores in neurons and glia. Neuroscience 63:381–404.

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318.

    CAS  Google Scholar 

  • Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995). Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61:71–78.

    PubMed  CAS  Google Scholar 

  • Lin H, Zhu YJ, Lal R (1999). Amyloid beta protein (1–40) forms calcium-permeable, Zn2+sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196.

    PubMed  CAS  Google Scholar 

  • Lin MC, Mirzabekov T, Kagan BL (1997). Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272:44–47.

    PubMed  CAS  Google Scholar 

  • Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB (1999). Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 163:1628–1635.

    PubMed  CAS  Google Scholar 

  • Masaki T, Vane JR, Vanhoutte PM (1994). International Union of Pharmacology nomenclature of endothelin receptors. Pharmacol Rev 46:137–142.

    PubMed  CAS  Google Scholar 

  • McLarnon JG, Wang X, Bae JH, Kim SU (1999a). Endothelin-induced changes in intracellular calcium in human microglia. Neurosci Lett 263:9–12.

    PubMed  CAS  Google Scholar 

  • McLarnon JG, Zhang L, Goghari V, Lee YB, Walz W, Krieger C, Kim SU (1999b). Effects of ATP and elevated K+ on K+ currents and intracellular Ca2+ in human microglia. Neuroscience 91:343–352.

    PubMed  CAS  Google Scholar 

  • Minelli A, Lyons S, Nolte C, Verkhratsky A, Kettenmann H (2000). Ammonium triggers calcium elevation in cultured mouse microglial cells by initiating Ca2+ release from thapsigargin-sensitive intracellular stores. Pflügers Arch 439:370–377.

    PubMed  CAS  Google Scholar 

  • Möller T, Hanisch UK, Ransom BR (2000a). Thrombin-induced activation of cultured rodent microglia. J Neurochem 75:1539–1547.

    PubMed  Google Scholar 

  • Möller T, Kann O, Verkhratsky A, Kettenmann H (2000b). Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59.

    PubMed  Google Scholar 

  • Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997a). Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17:615–624.

    PubMed  Google Scholar 

  • Möller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H (1997b). Endothelininduced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport 8:2127–2131.

    PubMed  Google Scholar 

  • Morgan BP (2000). The complement system: an overview. Methods Mol Biol 150:1–13.

    PubMed  CAS  Google Scholar 

  • Morgan BP, Gasque P (1996). Expression of complement in the brain: role in health and disease. Immunology Today 17:461–466.

    PubMed  CAS  Google Scholar 

  • Morgan BP, Gasque P, Singhrao S, Piddlesden SJ (1997). The role of complement in disorders of the nervous system. Immunopharmacology 38:43–50.

    PubMed  CAS  Google Scholar 

  • Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T (1996). Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci 16:3590–3600.

    PubMed  CAS  Google Scholar 

  • Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y (2000). P2 Purinoceptor expression and functional changes of hypoxia-activated cultured rat retinal microglia. Neurosci Lett 282:153–156.

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Pasinetti GM (2000). The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer’s disease. J Neuroimmunol 105:124–130.

    PubMed  CAS  Google Scholar 

  • Murdoch C, Finn A (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:3032–3043.

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998). Glutamate receptors: brain function and signal transduction. Brain Res Rev 26:230–235.

    PubMed  Google Scholar 

  • Noda M, Nakanishi H, Nabekura J, Akaike N (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20:251–258.

    PubMed  CAS  Google Scholar 

  • Nolte C, Möller T, Walter T, Kettenmann H (1996). Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73:1091–1107.

    PubMed  CAS  Google Scholar 

  • Nörenberg W, Cordes A, Blohbaum G, Frohlich R, Illes P (1997). Coexistence of purinoand pyrimidinoceptors on activated rat microglial cells. Br J Pharmacol 121:1087–1098.

    PubMed  Google Scholar 

  • Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [published erratum appears in Nature 1996 Nov 21; 384(6606):288]. Nature 382:833–835.

    PubMed  CAS  Google Scholar 

  • Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000). Involvement of ibal in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 113:3073–3084.

    PubMed  CAS  Google Scholar 

  • Ozawa S, Kamiya H, Tsuzuki K (1998). Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618.

    PubMed  CAS  Google Scholar 

  • Parekh AB, Penner R (1997). Store depletion and calcium influx. Physiol Rev 77:901–930.

    PubMed  CAS  Google Scholar 

  • Paresce DM, Ghosh RN, Maxfield FR (1996). Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565.

    PubMed  CAS  Google Scholar 

  • Patel S, Joseph SK, Thomas AP (1999). Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264.

    PubMed  CAS  Google Scholar 

  • Penner R, Fasolato C, Hoth M (1993). Calcium influx and its control by calcium release. Curr Opin Neurobiol 3:368–374.

    PubMed  CAS  Google Scholar 

  • Pettit EJ, Fay FS (1998). Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 78:949–967.

    PubMed  CAS  Google Scholar 

  • Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000). Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445.

    PubMed  CAS  Google Scholar 

  • Priller J, Haas CA, Reddington M, Kreutzberg GW (1995). Calcitonin gene-related peptide and ATP induce immediate early gene expression in cultured rat microglial cells. Glia 15:447–457.

    PubMed  CAS  Google Scholar 

  • Putney JW, Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium 7:1–12.

    PubMed  CAS  Google Scholar 

  • Putney JW, Jr. (1990). Capacitative calcium entry revisited. Cell Calcium 11:611–624.

    PubMed  CAS  Google Scholar 

  • Putney JW, Jr., McKay RR (1999). Capacitative calcium entry channels. Bioessays 21:38–46.

    PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998). Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492.

    PubMed  CAS  Google Scholar 

  • Rhee SK, Quist AP, Lal R (1998). Amyloid beta protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 273:13379–13382.

    PubMed  CAS  Google Scholar 

  • Righi M, Letari O, Sacerdote P, Marangoni F, Miozzo A, Nicosia S (1995). MYC-immortalized microglial cells express a functional platelet-activating factor receptor. J Neurochem 64:121–129.

    PubMed  CAS  Google Scholar 

  • Rossi D, Zlotnik A (2000). The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242.

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Polokoff MA (1994). Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415.

    PubMed  CAS  Google Scholar 

  • Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, Achim CL (1998). Chemokines and receptors in HIV encephalitis. Aids 12:1021–1026.

    PubMed  CAS  Google Scholar 

  • Sanz JM, Di Virgilio F (2000). Kinetics and mechanism of ATP-dependent IL-1 beta release from microglial cells. J Immunol 164:4893–4898.

    PubMed  CAS  Google Scholar 

  • Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK (2000). Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin Immunol 96:243–251.

    PubMed  CAS  Google Scholar 

  • Silei V, Fabrizi C, Venturini G, Salmona M, Bugiani O, Tagliavini F, Lauro GM (1999). Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res 818:168–170.

    PubMed  CAS  Google Scholar 

  • Silei V, Fabrizi C, Venturini G, Tagliavini F, Salmona M, Bugiani O, Lauro GM (2000). Measurement of intracellular calcium levels by the fluorescent Ca2+ indicator Calcium-Green. Brain Res Protoc 5:132–134.

    CAS  Google Scholar 

  • Sola C, Tusell JM, Serratosa J (1997). Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 81:699–705.

    PubMed  CAS  Google Scholar 

  • Tanabe S, Heesen M, Yoshizawa I, Berman MA, Luo Y, Bleul CC, Springer TA, Okuda K, Gerard N, Dorf ME (1997). Functional expression of the CXC-chemokine receptor4/fusin on mouse microglial cells and astrocytes. J Immunol 159:905–911.

    PubMed  CAS  Google Scholar 

  • Taupenot L, Ciesielski-Treska J, Ulrich G, Chasserot-Golaz S, Aunis D, Bader MF (1996). Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience 72:377–389.

    PubMed  CAS  Google Scholar 

  • Thomas A, Gasque P, Vaudry D, Gonzalez B, Fontaine M (2000). Expression of a complete and functional complement system by human neuronal cells in vitro. Int Immunol 12:1015–1023.

    PubMed  CAS  Google Scholar 

  • Toescu EC, Möller T, Kettenmann H, Verkhratsky A (1998). Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86:925–935.

    PubMed  CAS  Google Scholar 

  • Van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A, MacKenzie ET, Fontaine M (2000). Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol 161:373–382.

    PubMed  Google Scholar 

  • Verkhratsky A, Orkand RK, Kettenmann H (1998). Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141.

    PubMed  CAS  Google Scholar 

  • Visentin S, Renzi M, Frank C, Greco A, Levi G (1999). Two different ionotropic receptors are activated by ATP in rat microglia. J Physiol (Lond) 519 Pt 3:723–736.

    CAS  Google Scholar 

  • Walz W, Ilschner S, Ohlemeyer C, Banati R, Kettenmann H (1993). Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J Neurosci 13:4403–4411.

    PubMed  CAS  Google Scholar 

  • Wang X, Bae JH, Kim SU, McLarnon JG (1999). Platelet-activating factor induced Ca2+ signaling in human microglia. Brain Res 842:159–165.

    PubMed  CAS  Google Scholar 

  • Wang X, Kim SU, Van Breemen C, McLarnon JG (2000). Activation of purinergic P2X receptors inhibits P2Y- mediated Ca2+ influx in human microglia Cell Calcium 27:205–212.

    PubMed  CAS  Google Scholar 

  • Whittemore ER, Korotzer AR, Etebari A, Cotman CW (1993). Carbachol increases intracellular free calcium in cultured rat microglia. Brain Res 621:59–64.

    PubMed  CAS  Google Scholar 

  • Yamashita K, Niwa M, Kataoka Y, Shigematsu K, Himeno A, Tsutsumi K, Nakano-Nakashima M, Sakurai-Yamashita Y, Shibata S, Taniyama K (1994). Microglia with an endothelin ETB receptor aggregate in rat hippocampus CA 1 subfields following transient forebrain ischemia. J Neurochem 63:1042–1051.

    PubMed  CAS  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691.

    PubMed  CAS  Google Scholar 

  • Zhang L, McLarnon JG, Goghari V, Lee YB, Kim SU, Krieger C (1998). Cholinergic agonists increase intracellular Ca2+ in cultured human microglia. Neurosci Lett 255:33–36.

    PubMed  CAS  Google Scholar 

  • Zimmerman GA, Elstad MR, Lorant DE, McLntyre TM, Prescott SM, Topham MK, Weyrich AS, Whatley RE (1996). Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv Exp Med Biol 416:297–304.

    PubMed  CAS  Google Scholar 

  • Zlotnik A, Yoshie O (2000). Chemokines: a new classification system and their role in immunity. Immunity 12:121–127.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Möller, T. (2002). Calcium Signaling in Microglial Cells. In: Streit, W.J. (eds) Microglia in the Regenerating and Degenerating Central Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4139-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4139-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2944-0

  • Online ISBN: 978-1-4757-4139-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics