Skip to main content

Biological Clocks and Mechanisms of Neural Control

  • Chapter
Mathematics in Medicine and the Life Sciences

Part of the book series: Texts in Applied Mathematics ((TAM,volume 10))

Abstract

A clock has three main parts: an oscillating system, such as a pendulum, spring, or electrical circuit; a source of energy; and a trigger mechanism or escapement that connects the energy source to the oscillator. A clock’s face presents the oscillator’s output in some useful way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Annotated References

  1. R. R. Ward, The living clocks, A. A. Knopf, New York, 1971.

    Google Scholar 

  2. A.J. Vander, J.H. Sherman, and D.S. Luciano, The mechanisms of body function, McGraw-Hill, 1975.

    Google Scholar 

  3. S.W. Kuffler, and J.G. Nicholls, From neuron to brain, Sinauer, Sunderlund, MA, 1976.

    Google Scholar 

  4. K. Hoffman, Splitting of circadian rhythms as a function of light intensity, Biochronometry, pp 134–151, National Academy of Sciences, Washington DC, 1971.

    Google Scholar 

  5. C. Rowesmitt, et al., Photoperiodic induction of diurnal locomotor activity in Microtus montanus, the montane vole, Can. J. Zool. 60 (1982), 2798–2803.

    Google Scholar 

  6. F.C. Hoppensteadt, An introduction to the mathematics of neurons, Cambridge Univ. Press, Cambridge, UK, 1986.

    Google Scholar 

  7. J.K. Hale, Ordinary differential equations, J. Wiley, New York, 1969.

    MATH  Google Scholar 

  8. A.T. Winfree, The geometry of biological time, Springer—Verlag, New York, 1980.

    MATH  Google Scholar 

  9. R. Guttman, S. Lewis, and J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a neurone oscillation, J. Physiol. 305 (1980), 377–395.

    Google Scholar 

  10. A.T. Winfree, When time breaks down, Princeton Univ. Press, 1987.

    Google Scholar 

  11. A.L. Hodgson, and A.F. Huxley, A quantitivative description of membrane current and its application to conduction and excitation of nerve, J. Physiol. 117 (1952), 500–544.

    Google Scholar 

  12. R. Guttman, L. Feldman, and E. Jakobsson, Frequency entrainment of squid axon membrane, J. Membrane Biol. 56 (1980), 9–18.

    Article  Google Scholar 

  13. H.C. Tuckwell, Introduction to theoretical neurobiology, Vols 1 and 2 Cambridge Univ. Press, New York, 1988.

    Book  Google Scholar 

  14. P. Horowitz and W. Hill, The art of electronics, Cambridge Univ. Press, New York, 1989.

    Google Scholar 

  15. D.H. Perkel, J.H. Schulman, T.H. Bullock, G.P. Moore, and J.P. Segundo, Pace maker neurons: effects of regularly spaced synaptic input, Science 163 (1964), 61–63.

    Article  Google Scholar 

  16. J.E. Rose, J.F. Brugge, D.J. Anderson, and J.E. Hind, Phase-locked responses to low frequency tones in single auditory nerve fibers of the squirrel monkey, J. Neurophysiol. 30 (1967), 769–793.

    Google Scholar 

  17. C. Ascoli, M. Barbi, S. Chillemi, and D. Petracchi, Phase-locked responses in the Limulus lateral eye, Biophysical J. 19 (1977), 219–240.

    Article  Google Scholar 

  18. D. Bramble, and D.R. Carrier, Running and breathing in mammals, Science 21 (1983), 251–256.

    Article  Google Scholar 

  19. F.C. Hoppensteadt, Intermittent chaos,PNAS, (USA) 86 (1989) 29912995.

    Google Scholar 

  20. C. von Euler, Central pattern generation during breathing, Trends in Neuroscience, Nov. 1980, 275–277.

    Google Scholar 

  21. F.C. Hopensteadt, The searchlight hypothesis, J. Math. Biol., 29 (1991), 689–691.

    Article  Google Scholar 

  22. H.D. Patton, A.F. Fuchs, B. Hille, A. Scher, and R. Steiner, Textbook of physiology, Vol 1, W.B. Saunders, 1989.

    Google Scholar 

  23. F. Crick, Function of the thalamic reticular complex: the searchlight hypothesis, PNAS, (USA) 81 (1984), 4586–4590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppensteadt, F.C., Peskin, C.S. (1992). Biological Clocks and Mechanisms of Neural Control. In: Mathematics in Medicine and the Life Sciences. Texts in Applied Mathematics, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4131-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4131-5_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4133-9

  • Online ISBN: 978-1-4757-4131-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics