Skip to main content

Laser Machining Analysis

  • Chapter
Laser Machining

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

This chapter surveys many of the most important theoretical works in laser surface heating, drilling, cutting, grooving and three-dimensional machining found in recent literature which are based on an understanding of the physics of laser/material interaction. These process models are needed in order to choose correct operating parameters and to implement closed-loop process control. These works entail both analytical and numerical modelling to find relationships between operating parameters, temperature distribution and erosion front geometry. The phenomena occurring during laser machining processes, such as plasma formation, creation of striations, and changes in surface absorption of laser beam energy are also explained in a theoretical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atanasoc, P.A., and S.I. Gendjov, “Laser Cutting of Glass Tubing: A Theoretical Model,” J. Phys. D: Applied Physics, Vol. 20 (1987) 597–601.

    Article  ADS  Google Scholar 

  2. Barber, R., “Hole Drilling with Lasers,” Creative Manufacturing Engineering Programs, Rept. No. MR74–951.

    Google Scholar 

  3. Belov, I.A., LP. Ginzburg, and L.I. Shub, “Supersonic Underexpanded Jet Impingement upon Flat Plate,” International Journal of Heat Mass Transfer, Vol. 16 (1973) 2067–2076.

    Article  MATH  Google Scholar 

  4. Brugger, K., “Exact Solutions for the Temperature Rise in a Laser-Heated Slab,” Journal of Applied Physics, Vol. 43, No. 2 (Feb. 1972), 577–583.

    Article  ADS  Google Scholar 

  5. Bunting, K.A., and G. Cornfield, “Toward a General Theory of Cutting:A Relationship Between the Incident Power Density and the Cut Speed,” Journal of Heat Transfer (Feb 1975), 116–122.

    Google Scholar 

  6. Bush, A.J., and F.J. Kromer, “Simplification of the Hole-Drilling Method of Residual Stress Measurement,” ISA Transactions, Vol. 12, No. 3 (Dec. 1973), 249–259.

    Google Scholar 

  7. Chryssolouris, G., et al., “Theoretical Aspects of a Laser Machine Tool,” Journal of Engineering for Industry, ASME, Vol. 110, No. 1 (Feb. 1988), 65–70.

    Article  Google Scholar 

  8. Chryssolouris, G., and J. Bredt, “Machining of Ceramics Using a Laser Lathe,” International Ceramic Review, Vol. 37, No. 2 (1988), 43–45.

    Google Scholar 

  9. Chryssolouris, G., and J. Bredt, and S. Kordas, “Laser Turning for Difficult to Machine Materials,” Proceedings of the Simposium on Machining of Ceramic Materials and Components, Amer. Soc. of Mech. Eng., Vol. 17 (Nov. 1985), 9–17.

    Google Scholar 

  10. Chryssolouris, G., and J. Bredt, and S. Kordas, “A New Machine Tool Concept Based on Lasers,” Proceedings of the XIV North Americal Manufacturing Research ConferencelNAMRC XIV, Soc. of Mfg. Eng. (May 1986), 245–250.

    Google Scholar 

  11. Chryssolouris, G., and J. Bredt, “Laser Turning of Steels,” 2nd Biennial International Machine Tool Research Forum (Sept. 1987).

    Google Scholar 

  12. Chryssolouris, G., and W.C. Choi, “Gas Jet Effects on Laser Cutting,” SP IE Conf on High Power Lasers (Jan. 1989).

    Google Scholar 

  13. Chryssolouris, G., and W.C. Choi, “Theoretical Aspects of Laser Grooving,” Proceedings, 14th Conference on Production Research and Technology (Jan. 1987), 323–331.

    Google Scholar 

  14. Chryssolouris, G., W.C. Choi, S.B. Kyi, and P. Sheng, “Investigation of the Effects of a Gas Jet on Laser Grooving,” Proceedings of the XVI North America! Manufacturing Research ConferencelNAMRC XVI, Soc. of Mfg. Eng. (May 1987), 217–222.

    Google Scholar 

  15. Chryssolouris, G, P.S. Sheng, and W.C. Choi, “Analysis on the Laser Machining Process for Ceramics and Composite Materials,” Proceedings, 15th Conference on Production Research and Technology (Jan. 1989).

    Google Scholar 

  16. Cockayne, B., and D.B. Gasson, “The Machining of Oxides Using Gas Lasers,” Journal of Material Science, Vol. 6 (1971), 126–129.

    Article  ADS  Google Scholar 

  17. Comini, G., S.D. Guidice, R.W. Lewis, and O.C. Zienkiewics, “Fininte Element Solution of Non-Linear Heat Conduction Problems with Special Reference to Phase Change,” International Journal of Numerical Methods in Engineering, Vol.8 (1974), 613–624.

    Article  ADS  MATH  Google Scholar 

  18. Copley, S.M., M. Bass, and R.G. Wallace, “Shaping Silicon Compound Ceramics with a Continuous Wave Carbon Dioxide Laser,” Proceedings, Second International Symposium on Ceramic Machining and Finishing (1978), 97–104.

    Google Scholar 

  19. Dabby, F.W., and U.-C. Paek, “High-Intensity Laser-Induced Vaporization and Explosion of Solid Material,” IEEE Journal of Quantum Electronics, Vol. QE-8, No. 2 (Feb. 1972), 106–111.

    Article  ADS  Google Scholar 

  20. Decker, L, J. Rue, and V. Atzert, “Physical Models and Technological Aspects of Laser Gas Cutting,” Proceedings of SPIE (Sept. 1983), 81–88.

    Google Scholar 

  21. Duley, W.W., Laser Processing and Analysis of Materials, Plenum Press, New York, 1983.

    Book  Google Scholar 

  22. El-Adawi, M.K., “Laser Melting of Solids-An Exact Solution for Time Intervals Less or Equal to the Transit Time,” Journal of Applied Physics, Vol. 60, No. 7 (Oct. 1986), 2256–2265.

    Article  ADS  Google Scholar 

  23. El-Adawi, M.K., and E.F. Elshehawey, “Heating a Slab Induced by a Time-Dependent Laser Irradiance-An Exact Solution,” Journal of Applied Physics, Vol. 60, No. 7 (Oct. 1986), 2250–2255.

    Article  ADS  Google Scholar 

  24. Eloy, J.-F., Power Lasers, Halsted Press, New York, 1987.

    Google Scholar 

  25. Fieret, J., and B.A. Ward, “Circular and Non-Circular Nozzle Exits for Supersonic Gas Jet Assist in CO2 Laser Cutting,” Proceedings, Third International Conference on Lasers in Manufacturing (LIM3), (1986).

    Google Scholar 

  26. Gubanova, O.I., V.V. Lunev, and L.N. Plastinina, “The Central Breakaway Zone with Interaction between a Supersonic Unexpanded Jet and a Barrier,” Fluid Dynamics, Vol. 6 (1973), 298–301.

    Article  ADS  Google Scholar 

  27. Gummer, J.H., and B.L. Hunt, “The Impingement of Non-Uniform, Axisymmetric Supersonic Jets on a Perpendicular Flat Plate,” Israel J. Technology, Vol. 12 (1974), 221–235.

    Google Scholar 

  28. Hamilton, D.C., and LR. Pashby, “Hole Drilling Studies with a Variable Pulse Length CO2 Laser,” Optics and Laser Technology (Aug. 1979), 183–188.

    Google Scholar 

  29. Hassanein, A.M., and G.L. Kulcinski, “Simulation of Rapid Heating in Fusion Reactor Forst Walls Using the Green’s Function Approach,” Journal of Heat Transfer, Vol. 106 (Aug. 1984), 486–490.

    Article  Google Scholar 

  30. Kobayashi, A., and Y., “Laser Drilling of Nonmetals,” Toshiba Review (Dec. 1971), 8–14.

    Google Scholar 

  31. Lee, CS., A. Goel, and H. Osada, “Parametric Studies of Pulsed-Laser Cutting of Thin Metal Plates,” Journal of Applied Physics, Vol. 58, No. 3 (Aug. 1985), 1339–1343.

    Article  ADS  Google Scholar 

  32. Longfellow, J., “High Speed Drilling in Alumina Substrates with a CO2 Laser,” Ceramic Bulletin, Vol. 50, No. 3 (1971), 251–253.

    Google Scholar 

  33. Luxon, J., Lasers in Manufacturing, Prentice-Hall, Engel wood Cliffs, NJ, 1987.

    Google Scholar 

  34. Masters, J.I., “Problem of Intense Surface Heating of a Slab Accompanied by Change of Phase,” Journal of Applied Physics, Vol. 27, No. 5 (May 1956), 477–484.

    Article  ADS  Google Scholar 

  35. Miyazaki, T., “Drilling Characteristics of Metal Foil in Electron Beam Processing,” Bulletin of the Japan Society of Precision Engineering, Vol. 13, No. 4 (Dec. 1979), 207–212.

    MathSciNet  Google Scholar 

  36. Modest, M.F., and H. Abakians, “Heat Conduction in a Moving Semi-Infinite Solid Subjected to Pulsed Laser Irradiation,” Journal of Heat Transfer, Vol. 108 (Aug. 1986), 597–607.

    Article  Google Scholar 

  37. Modest, M.F., and H. Abakians, “Evaporative Cutting of a Semi-Infinite Body with a Moving CW Laser,” Journal of Heat Transfer (Aug. 1986), 602–607.

    Google Scholar 

  38. Nakada, Y., and M.A. Giles, “X-Ray and Scanning Electron Microscope Studies of Laser-Drilled Holes in AI2O3 Substrates,” Journal of American Ceramic Society — Discussion and Notes, Vol. 54, No. 7, 354–355.

    Google Scholar 

  39. Nielsen, S.E., Laser Cutting with High Pressure Cutting Gases and Mixed Cutting Gases, Ph.D. Thesis, Institute of Manufacturing Engineering, Technical University of Denmark (1985).

    Google Scholar 

  40. Pack, U.C., and F.P. Gagliano, “Thermal Analysis of Laser Drilling Processes,” IEEE Journal of Quantum Electronics, Vol. QE-8, No. 2 (Feb. 1972), 112–119.

    ADS  Google Scholar 

  41. Petring, D., P. Abels, E. Beyer, and G. Herziger, “Werkstoffbearbeitung mit Laserstrahlung,” Feinwerktechnik & Messtechnik, Vol. 96 (1988), 364–372.

    Google Scholar 

  42. Ready, J.F., “Effects Due to Absorption of Laser Radiation,” Journal of Applied Physics, Vol. 36, No. 2 (Feb. 1965), 462–468.

    Article  ADS  Google Scholar 

  43. Ruselowski, J.M., “Laser Selection for Cutting,” SME Technical Paper (1987), Paper No. MR87–235.

    Google Scholar 

  44. Schulz, W., G. Simon, H.M. Urbassek, and I. Decker, “On Laser Fusion Cutting of Metals,” J. Phys. D: Applied Physics, Vol. 20 (1987), 481–488.

    Article  ADS  Google Scholar 

  45. Schuoecker, D., and W. Abel, “Material Removal Mechanism of Laser Cutting,” Proceedings of the SPIE (Sept. 1983), 88–95.

    Google Scholar 

  46. Schuocker, D., and B. Walter, “Theoretical Model of Oxygen Assisted Laser Cutting,” Inst. Phys. Conf. Ser., No. 72 (Aug. 1984), 111–116.

    Google Scholar 

  47. Schuocker, D., “Theoretical Model of Reactive Gas Assisted Laser Cutting Including Dynamic Effects,” Proceedings of the SPIE, Vol. 650 (1986), 210–219.

    Article  ADS  Google Scholar 

  48. Schuocker, D., and P. Muller, “Dynamic Effects in Laser Cutting and Formation of Periodic Striatums,” Proceedings of the SPIE, Vol. 801 (1987), 258–264.

    Article  Google Scholar 

  49. Schvan, P, and R.E. Thomas, “Time-Dependent Heat Flow Calculation of CW Laser-Induced Melting of Silicon,” Journal of Applied Physics, Vol. 57, No. 10 (May 1985), 4738–4741.

    Article  ADS  Google Scholar 

  50. Sparks, M., “Theory of Laser Heating of Solids: Metals,” Journal of Applied Physics, Vol. 47, No. 3, (Mar. 1976), 837–849.

    Article  ADS  Google Scholar 

  51. Stürmer, E., and M. von Allmen, “Influence of Laser-Supported Detonation Waves on Metal Drilling with Pulsed CO2 Lasers,” Journal of Applied Physics, Vol. 49, No. 11 (Nov. 1978), 5648–5654.

    Article  ADS  Google Scholar 

  52. Vicanek, M., and G. Simon, “Momentum and Heat Transfer of an Inert Gas Jet to the Melt in Laser Cutting,” J. Phys. D: Applied Physics., Vol. 20 (1987), 1191–1196.

    Article  ADS  Google Scholar 

  53. Vicanek, M., G. Simon, H. M. Urbassek, and I. Decker, “Hydrodynamical Instability of Melt Flow in Laser Cutting,” J. Phys. D: Applied Physics, Vol. 20 (1987), 140–145.

    Article  ADS  Google Scholar 

  54. von Allmen, M., “Laser Drilling Velocity in Metals,” Journal of Applied Physics, Vol. 47, No. 12 (Dec. 1976), 5460–5463.

    Article  ADS  Google Scholar 

  55. von Allmen, M., P. Blaser, K. Affolter, and E. Stürmer, “Absorption Phenomena in Metal Drilling with Nd-Lasers,” IEEE Journal of Quantum Electronics, Vol. QE-14, No. 2 (Feb. 1978), 85–88.

    Article  ADS  Google Scholar 

  56. Waechter, D., P. Schvan, R.E. Thomas, and N.G. Tarr, “Modelling of Heat Flow in Multilayer CW Laser-Annealed Structures,” Journal of Applied Physics, Vol. 59, No. 10 (May 1986), 3371–3374.

    Article  ADS  Google Scholar 

  57. Wagner, R.E., “Laser Drilling Mechanics,” Journal of Applied Physics, Vol. 45, No. 10 (Oct. 1974), 4631–4637.

    Article  ADS  Google Scholar 

  58. Warren, R.E., and M. Sparks, “Laser Heating of a Slab Having Temperature-Dependent Surface Absorptance,” Journal of Applied Physics, Vol. 50, No. 12 (Dec. 1979), 7952–7957.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chryssolouris, G. (1991). Laser Machining Analysis. In: Laser Machining. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4084-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4084-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-4086-8

  • Online ISBN: 978-1-4757-4084-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics