Skip to main content

Lakebed Pockmarks in Burlington Bay, Lake Champlain II. Habitat Characteristics and Biological Patterns

  • Conference paper
Lake Champlain: Partnerships and Research in the New Millennium

Abstract

Pockmarks are common features on the bottom of Lake Champlain, especially in the central part of the lake, between Burlington, Vermont and Plattsburgh, New York. Pockmarks have the potential to provide a unique bottom environment for biota because of the different water quality and habitat conditions that may exist inside and outside the pockmark. In Burlington Bay, the “General” is a large pockmark, roughly 40 meters in diameter and 4 meters in depth, located in about 28 meters of water. We collected benthic invertebrate samples inside and outside the “General” pockmark, and collected sediment, pore and overlying water for analysis. We also caged zebra mussels inside and outside the pockmark to determine whether varying water quality or food availability in the pockmark would influence these mussels.

The concentrations of Al, Fe, Ca, K, Mg, Mn, S, Si, and Zn in the overlying water were higher inside the pockmark than outside, with generally highest concentrations near the outside rim of the pockmark rather than at its deepest point. The benthic invertebrate density also varied among sites, with generally more invertebrates inside than outside the pockmark. Clinkers, the remains of coal combustion, were common in the sediment both inside and outside the pockmark. Although clinker density was highly variable, in general, fewer invertebrates were found where the density of clinkers was high. The zebra mussels inside the lip of the pockmark grew less, but had higher shell weight to body weight ratios than those outside the pockmark. This suggests that food might be limited by the water flow pattern in the pockmark, but these mussels were able to take advantage of additional calcium in that water. Mean calcium concentration outside was 14.23mg/L, while inside it was 15.14 mg/L. It also suggests that zebra mussels in the broader lake may be calcium limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association. 1995. Standard Methods for the Examination of Water and Wastewater. 19th Edition. American Public Health Association. Washington DC.

    Google Scholar 

  • Barton, D.R. 1988. Distribution of some common benthic invertebrates in nearshore Lake Erie, with emphasis on depth and type of substratum. J. Great Lakes Res. 14: 34–43.

    Article  Google Scholar 

  • Brock, T.D., D.R. Lee, D. Janes, and D. Winek. 1982. Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin. Water Res. 16: 1255–1263.

    Google Scholar 

  • Corliss, J.B., J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Hersen, R.D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, and T.H. van Andel. 1979. Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.

    Article  CAS  Google Scholar 

  • Davis, P.H. and R.B. Spies. 1980. Infaunal benthos of a natural petroleum seep. Study of community structure. Mar. Biol. 59: 31–41.

    Google Scholar 

  • Eliopoulos, C. and P. Stangel. 1999. Lake Champlain 1998 zebra mussel monitoring program. Final Report, June 1999. Vermont Department of Environmental Conservation, Waterbury, VT. 32 pp. + appendices.

    Google Scholar 

  • Everdingen, R.O. van. 1991. Physical, chemical and distributional aspects of Canadian springs. Memoirs Entomolog. Soc. Canada 155: 7–28.

    Google Scholar 

  • Ferrington, L.C. Jr., R.G. Kavanaugh, F.J. Schmidt, and J.L. Kavanaugh. 1995. Habitat separation among Chironomidae (Diptera) in Big Springs. Pp 152–165 in: L.C. Ferrington, Jr. ed, Biodiversity of aquatic insects and other invertebrates in springs. J. Kansas Entomolog. Soc. Spec. Publ. 1.

    Google Scholar 

  • Glazier, D.S. 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshw. Biol. 26: 527–542.

    Google Scholar 

  • Hagerthey, S.E. and W.C. Kerfoot. 1998. Groundwater follow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnol. Oceanogr. 43: 1227–1242.

    Google Scholar 

  • Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with family level biotic index. J.North Amer. Benthol. Soc. 7: 65–86.

    Google Scholar 

  • Hincks, S.S. and G.L. Mackie. 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Can. J. Fish.Aquat. Sci. 54: 2049–2057.

    Google Scholar 

  • Horikoshi, M. and T. Ishii. 1985. Cold seep communities at 3800 and 5850 m off Japan. Deep Sea Notes: 1617.

    Google Scholar 

  • Hovland, M and A.G. Judd. 1988. Seabed pockmarks and seepages: impact on geology, biology and marine environment. Graham and Trotman, London. 293 pp.

    Google Scholar 

  • Hovland, M. and E. Thomsen. 1989. Hydrocarbon-based communities in the North Sea? Sarsia: 74: 29–42.

    Google Scholar 

  • Johnson, T.C., R.D. Flood, W.H. Busch, and J.D. Halfman. 1984. Effects of bottom currents and fish on sedimentation in a deep-water, lacstrine environment. Geol. Soc. Amer. Bull. 95: 1425–1436.

    Google Scholar 

  • Kamp, G. van der. 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Pp 4–17 in: L.C. Ferrington, Jr. ed, Biodiversity of aquatic insects and other invertebrates in springs. J. Kansas Entomol. Soc. Spec. Publ. 1.

    Google Scholar 

  • King, L.H. and B. MacLean. 1970. Pockmarks on the Scotian Shelf. Geol. Soc. Amer. Bull. 81: 3141–3148.

    Google Scholar 

  • LaBaugh, J.W., D.O. Rosenberry, and T.C. Winter. 1995. Groundwater contribution to the water and chemical budgets of Williams Lake, Minnesota, 1980–1991. Can. J. Fish. Aquat. Sci. 52: 754–767.

    Google Scholar 

  • Manley, P.L., T.O. Manley, M.C. Watzin, and J. Gutierrez. 2002. Lakebed pockmarks in Burlington Bay, Lake Champlain. I. Hydrodynamics and implications of origin. This volume.

    Google Scholar 

  • McCabe, D.J. 1998. Biological communities in springbrooks. Pp 221–228 in: L. Botosaneanu, ed., Studies in Crenobiology: the biology of springs and springbrooks. Backhuys Publishers, Leiden.

    Google Scholar 

  • Mellina, E. and J.B. Rasmussen. 1994. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physicochemical factors. Can. J. Fish. Aquat. Sci. 51: 1024–1036.

    Google Scholar 

  • Meyer, G.E. G.K. Gruendling. 1979. Limnology of Lake Champlain. Lake Champlain Basin Study, New England River Basin Commission. 417 pp.

    Google Scholar 

  • Ramacharan, C.W., D.K. Padilla, and S.I Dodson. 1992. Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Can. J. Fish. Aquat. Sci. 49: 2611–2620.

    Google Scholar 

  • Resh, V.H. 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquat. Insects 5: 193–200.

    Google Scholar 

  • Reynoldson, T.R., R.C. Bailey, K.E. Day, and R.H. Norris. 1995. Biological guidelines for freshwater sediment based on Benthic Assessment of Sediment Toxicity (the BEAST) using a multivariate approach for predicting biological state. Aust. J. Ecol. 20: 198–219.

    Google Scholar 

  • Rhoads, D.0 and R.A. Lutz. 1980. Skeletal growth of aquatic organisms. Plenum Press, New York. 594 pp.

    Google Scholar 

  • Rosenberg, D. M., and V. H. Resh, eds. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman and Hall, 488 pp.

    Google Scholar 

  • Ross, 0. 1997. The steamboats of Lake Champlain 1809–1930. Vermont Heritage Press. 184 pp.

    Google Scholar 

  • SAS Institute Inc. 1988. SAS/STATE User’s Guide, Release 6. 03. Cary, North Carolina, SAS Institute Inc.

    Google Scholar 

  • Vinogradov, G.A., N.F. Smirnova, V.A. Sokolov, and A.A. Fruznitsky. 1993. Influence of chemical composition of the water on the mollusk Dreissena polymorpha. Pp 283–293 in: T.F. Nalepa and D.W. Schlosser, eds., Zebra mussels: biology, impacts and control. Lewis Publishers. Boca Raton, FL.

    Google Scholar 

  • Watzin, M.C., J. Rowder, B. Lancaster, R Acabbo, and L Bronson. 2003. Zebra mussels, shipwrecks, and the environment - will fish become significant predators on zebra mussels in Lake Champlain? Final Report to the Argosy Foundation. Boston, MA. 27 pp.

    Google Scholar 

  • Webb, D.W., M.J. Wetzel, P.C. Reed, L.R. Philippe, and T.C. Young. 1998. The macroinvertebrate biodiversity, water quality, and hydrogeology of ten karst springs in the Salem Plateau section of Illinois, USA. Pp 39–48 in: L. Botosaneanu, ed., Studies in Crenobiology: the biology of springs and springbrooks. Backhuys Publishers, Leiden.

    Google Scholar 

  • Williams, D.D. and H.V. Danks. 1991. Arthropods of springs: introduction. Mem. Entomol. Soc. Canada 155: 3–5.

    Google Scholar 

  • Williams, D.D. and N.E. Williams. 1998. Invertebrate communities from freshwater springs: what can they contribute to pure and applied ecology? Pp 251–261 in: L. Botosaneanu, ed., Studies in Crenobiology: the biology of springs and springbrooks. Backhuys Publishers, Leiden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Watzin, M.C., Manley, P.L., Manley, T.O., Kyriakeas, S.A. (2004). Lakebed Pockmarks in Burlington Bay, Lake Champlain II. Habitat Characteristics and Biological Patterns. In: Manley, T.O., Manley, P.L., Mihuc, T.B. (eds) Lake Champlain: Partnerships and Research in the New Millennium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4080-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4080-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3449-9

  • Online ISBN: 978-1-4757-4080-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics