Skip to main content

Wide-Range Characteristic Thermodynamic Curves

  • Chapter

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The thermodynamic properties of materials are investigated at megabar pressures with experimental and theoretical methods. At pressures of 0–1 Mbar (sometimes up to 3 Mbar) there are numerous experiments on static compressibility. In the range 0.2–20 Mbar there are also numerous shock-wave compression experiments done using explosive devices and light-gas guns. Some shock-compression experiments have been performed near underground nuclear explosions at pressures of 20–500 Mbar. No experiments have been conducted at higher pressures and none can be conducted in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.N. Kalitkin, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 114–161.

    Google Scholar 

  2. A.F. Nikiforov, V.G. Novikov, and V.B. Uvarov, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 162–196.

    Google Scholar 

  3. G.V. Sin’ko, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 197–230.

    Google Scholar 

  4. B.K. Vodolaga, and V.A. Simonenko, in: Mathematical Modeling: Physical and Chemical Properties of Substances, Moscow, Nauka, (1989), pp. 73–113.

    Google Scholar 

  5. N.N. Kalitkin, Math. Modelirovanie 1 (2), pp. 64–108 (1989).

    MATH  Google Scholar 

  6. M. van Thiel (ed.), Compendium of Shock WaveData, Lawrence Livermore National Laboratory report UCRL-50108, Livermore, CA, (1977).

    Google Scholar 

  7. S.P. Marsh (ed.), LASL ShockHugoniotData, Univ. Calif. Press, Berkley, (1980).

    Google Scholar 

  8. R.F. Trunin (ed.), Condensed Matter Properties Under High Pressures and Temperatures, Min. Nucl. Pow. hid., Arzamas-16, (1992).

    Google Scholar 

  9. R.P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75 (10), pp. 1561–1573 (1949).

    Article  ADS  MATH  Google Scholar 

  10. R. Latter, Phys. Rev. 99 (6), pp. 1854–1870 (1955).

    Article  ADS  MATH  Google Scholar 

  11. D.A. Kirzhnitz, Sov. Phys.—JETP 5(1), pp. 64–71 (1957). [trans. from Zh. Eksp. Teor. Fiz. 32(1), pp. 115–123 (1957).]

    Google Scholar 

  12. N.N. Kalitkin, Soy. Phys.—JETP 11(5), pp. 1106–1110 (1960) [trans. from Zh. Eksp. Teor. Fiz. 38(5) pp., 1534–1540 (1960).

    Google Scholar 

  13. N.N. Kalitkin and L. V. Kuz’mina, Russ. J. Plasma Physics 2(5), p. 478 (1976). [trans. from Fiz. Plazmy 2 (5), pp. 858–868 (1976).

    Google Scholar 

  14. D.A. Kirzhnitz, Soy. Phys.—JETP 35(8), pp. 1081–1089 (1959). [trans. from Zh. Eksp. Teor. Fiz. 35 (6), pp. 1545–1557 (1958).

    Google Scholar 

  15. N.N. Kalitkin, in: Questions of Low-Temperature Plasma Physics, Nauka and Tekhnika, Minsk, (1970), pp. 102–105.

    Google Scholar 

  16. V.P. Kopyshev, in: Numerical Methods of Continuous Media Mechanics 8(6), (1977), pp. 54–67.

    Google Scholar 

  17. N.N. Kalitkin and L.V. Kuz’mina, in: Numerical Methods of Continuous Media Mechanics 8(6), (1977), pp. 46–53.

    Google Scholar 

  18. W. Kohn and P. Vashishta, in: Theory of the Inhomogeneous Electron Gas, Plenum Press, New York, (1983), pp. 79–147.

    Google Scholar 

  19. N.H. March and J. Gallaway, in: Solid State Physics 38 (eds. F. Seitz and D. Turnbull) Academic Press, New York, (1984), pp. 135–221.

    Google Scholar 

  20. L.V. Altshuler, N.N. Kalitkin, L.V. Kuz’mina, and B.S. Chekin, Soy. Phys.-JETP 45(1) pp. 167–171 (1977). [trans. from Zh. Eksp. Teor. Fiz. 72(1) pp. 317–325 (1977).]

    Google Scholar 

  21. K.A. Gshneider, in: Solid State Physics 16 (ed. F. Seitz and D. Turnbull) Acad. Press, New York, (1964), pp. 275–426.

    Google Scholar 

  22. R.F.Trunin,Phys.-Usp. 37(1) pp. 1123–1145, (1994). [trans. from Usp. Fiz. Nauk 164(11) pp. 1215–1237 (1994).]

    Google Scholar 

  23. N.M. Kuznetzov, Thermodynamic Functions and Hugoniots of Air at High Temperatures, Mashinostroenie, Moscow (1965). (in Russian)

    Google Scholar 

  24. A.A. Likalter, Sov. Phys. -JETP 29(1) pp. 133–135, (1969). [trans. from Zh. Eksp. Teor. Fiz, 56(1) pp. 240–245 (1969).]

    Google Scholar 

  25. V.P. Kopyshev, Atomic Science and Engineering Questions; Theoretical and Applied Physics 4, pp. 3–10 (1989).

    Google Scholar 

  26. V.S. Volokitin, I.O.Golosnoy, and N.N.Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz. (11), pp.23–43 (1994).

    Google Scholar 

  27. V.S.Volokitin, I.O.Golosnoy, and N.N.Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz. (4), pp. 11–31 (1995).

    Google Scholar 

  28. L.V. A1ttshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, and B.S. Chekin, J. Appl. Mech. Tech. Phys. 22(2), pp. 145–169 (1981). [trans. from PrikL Mekh. Tekh. Fiz. 2, pp. 3–34 (1981).]

    Google Scholar 

  29. L.V.A1’tshuler, S.E. Brusnikin, and E.A. Kuzmenkov, J. Appl. Mech Tech. Phys. 28(1), pp. 129–141 (1987). [trans. from PrikL Mekh. Tekh. Fiz. 28(1), pp. 134–146 (1987).]

    Google Scholar 

  30. L. V.Altshuler, and S.E.Brusnikin, High Temperature 27(1), pp. 39–47, (1989). [trans. from Teplofizika Vys. Temp. 27(1), pp. 42–51(1989).]

    Google Scholar 

  31. N.N.Kalitkin, in: High Pressure Science and Technology, World Sci. Publ., Singapore, (1996) pp. 983–985.

    Google Scholar 

  32. N.N.Kalitkin and L. V.Kuz’mina, DokL Akad. Nauk 43 (5), pp. 276–279, (1998).

    Google Scholar 

  33. A.I.Voropinov, and G.MGandelman, V.G.Podvalny, Sov Phys.-Usp. 13(1) pp. 56–72 (1970). [trans. from Usp. Fiz. Nauk,100(2), pp.193–224 (1970).]

    Google Scholar 

  34. E.Yu. Dnestrovskaya and N.N. Kalitkin, Preprint No. 168, Keldysh Inst. Appl.Math., Moscow, (1988).

    Google Scholar 

  35. S.D. Rothman and A.M. Evans, in: New Models and Numerical Codes for Shock Wave Processes in Condensed Media, AWE Hunting-BRAE, Oxford (1997), pp. 298–301.

    Google Scholar 

  36. L.V. A1’tshuler, A.A. Bakanova et al., Himicheskaya Fizika 14 (2–3), pp. 65–67 (1995).

    Google Scholar 

  37. R. Latter, J. Chem. Phys. 24 (2) pp. 280–297 (1956).

    Article  ADS  Google Scholar 

  38. N.N. Kalitkin, and L.V. Kuz’mina, DokL Acad. Nauk 44 (9), pp. 589–591 (1999).

    Google Scholar 

  39. N.N. Kalitkin, and I.A. Govorukhina, Sov. Phys.-Solid State 7(2), pp. 287–292 (1965) [trans. from Fiz. Tverd. Tela 7(2), pp. 355–562 (1965).]

    Google Scholar 

  40. E.A. Kuzmenkov, Izvestia Siberian Division of the Russian Acad. Sci. 6, pp. 106–112 (1989).

    Google Scholar 

  41. L.V. A1’tshuler, A.A. Bakanova, and R.F. Trunin, Soy. Phys.-JETP 15(1) pp. 6574 (1962) [trans. from Zh. Eksp. Teor. Fiz. 42(1) pp. 91–104 (1962).]

    Google Scholar 

  42. P.W. Bridgman, Proc. Am. Acad. Sci. 76 (6), p. 189, (1949).

    Article  Google Scholar 

  43. H.K. Mao, P.M. Bell, J.W. Shaner, and D.J. Steinberg, J. Appl. Phys. 49 (6) pp. 3276–3283 (1978).

    Article  ADS  Google Scholar 

  44. L.V. A1’tshuler, S.B. Kormer, A.A. Bakanova, and R.F. Trunin, Soy. Phys. —JETP 11(3), pp. 573–579 (1960). [trans. from Zh. Eksp. Teor. Fiz. 38(3) pp. 790–798 (1960).]

    Google Scholar 

  45. W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandrea, N.W. Ashcroft, N.C. Holmes, and G.R. Gathers, Phys. Rev. Letters 60 (14), pp. 1414–1417 (1988).

    Article  ADS  Google Scholar 

  46. R.M. More, J.F. Barnes, and R.D. Cowan, Bull. Am. Phys. Soc.1121, p. 1153 (1976).

    Google Scholar 

  47. K.S. Holian, Los Alamos National Laboratory Report LA-10160-MS, (1985).

    Google Scholar 

  48. D.A. Young, J.K. Wolford, F.J. Rogers, and K.S. Holian, Phys. Lett. A 108 (3), pp. 157–160 (1985).

    Article  ADS  Google Scholar 

  49. L.S. Polak (ed.), Essays on Physics and Chemistry of Low-Temperature Plasma, Nauka, Moscow, (1971) p. 241.

    Google Scholar 

  50. W. Ebeling, W.-D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Academie -Verlag, Berlin, (1976).

    Google Scholar 

  51. V.E. Fortov and I.T. Yakubov, Physics ofNonideal Plasma, United Institute of Chemical Physics and Institute of High Temperatures of USSR Academy of Sciences, Chernogolovka, (1984). (in Russian)

    Google Scholar 

  52. N.N. Kalitkin and L.V. Kuz’mina, Preprint No. 16, Keldysh Inst. Appl. Math., Moscow, (1989).

    Google Scholar 

  53. J. Holtsmark, Ann. Phys. Leipzig 58, p. 577 (1919).

    Article  ADS  Google Scholar 

  54. A.A. Broyles, Phys. Rev. A, 100, pp. 1181–1190 (1955).

    MATH  Google Scholar 

  55. Yu.K. Kurilenkov and V.S. Filinov, High Temperature 18(4), pp. 509–518 (1980). [trans. from Teplofiz. Vys. Temp. 18 (4), pp. 657–667 (1980).

    Google Scholar 

  56. I.O. Golosnoy, Mat. Modelirovanie 4 (6), pp. 3–12 (1992).

    Google Scholar 

  57. C.A. Iglesias, J.L. Lebowitz, and D. McGowan, Phys. Rev. A 28 (3), pp. 1667–1672 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  58. C.A. Iglesias, H.E. DeWitt, J.L. Lebowitz, D. McGowan, and W.B. Hubbard, Phys. Rev. A, 31 (3), pp. 1698–1702 (1985).

    Article  ADS  Google Scholar 

  59. C.A. Iglesias and J.L. Lebowitz, Phys. Rev. A 30 (4), pp. 2001–2004 (1984).

    Article  ADS  Google Scholar 

  60. A. Alastuey, C.A. Iglesias, J.L. Lebowitz, and D. Levesque, Phys. Rev. A 30 (5), pp. 2537–2547 (1984).

    Article  ADS  Google Scholar 

  61. J.F. Springer, M.A. Pokrant, and F.A. Stevens, Jr., Chem. Phys. 58 (11), pp. 4863–4867 (1973).

    ADS  Google Scholar 

  62. L.D. Landau and E.M. Lifshits, Theoretical Physics, Vol. 3, Quantum Mechanics: Non-relativistic Theory, Nauka, Moscow, (1989).

    Google Scholar 

  63. J.W. Dufty, D.B. Boercker, and C.A. Iglesias, Phys. Rev. A 31 (3), pp. 1681–1686 (1985).

    Article  ADS  Google Scholar 

  64. L.B. Timan, Zh. Eksp. Teor. Fiz 27 (6), pp. 708–711 (1954).

    Google Scholar 

  65. J.P. Hansen, Phys. Rev. A 8 (6), pp. 3096–3109 (1973).

    Article  ADS  Google Scholar 

  66. V.G. Sevast’yanenko, Preprint No. 30, Novosibirsk, Inst. Theor. Appl. Mech., (1980).

    Google Scholar 

  67. I.O. Golosnoy and N.N. Kalitkin, Preprint No. 73, Keldysh Inst. Appl. Math., Moscow, (1990).

    Google Scholar 

  68. V.S. Volokitin, and N.N. Kalitkin, Preprint No. 11, Inst. Math. Model., Moscow, (1991).

    Google Scholar 

  69. V.S.Volokitin and N.N. Kalitkin, Mat. Modelirovanie 3 (5), pp. 49–60 (1991).

    Google Scholar 

  70. G.A. Koval’skaya and V.G. Sevast’yanenko, in: Properties of Low-Temperature Plasma and Methods of Its Diagnosis, Nauka, Moscow, (1977), pp. 11–37. (in Russian)

    Google Scholar 

  71. I.O. Golosnoy, Mat. Modelirovanie 3 (9), pp. 49–54 (1991).

    Google Scholar 

  72. V.S. Volokitin, Mat. Modelirovanie 3 (8), pp. 47–52 (1991).

    Google Scholar 

  73. N.N. Kalitkin and I.V. Ritus, preprint No. 18, Keldysh Inst. Appl. Math., Moscow, (1987). (in Russian)

    Google Scholar 

  74. B.N. Lomakin and V.E. Fortov, Sov. Phys.—JETP 36(1) pp. 48–53 (1973) [trans. from Zh. Eksp. Teor. Fiz. 63(1) pp. 92–103 (1972).]

    Google Scholar 

  75. V.A. Sechenov and O.E. Shchekotov, High Temperature 12(3) pp. 562–564 (1974). [trans. from Teplofiz. Vys. Temp. 12(3) pp. 652–654 (1974).]

    Google Scholar 

  76. A.V. Bushman B.N. Lomakin, V.A. Sechenov, V.E. Fortov, O.E. Shchekotov, and I.I. Sharipdzhanov, Sov. Phys.—JETP 42(5) pp. 828–831 (1976) [trans. from Zh. Eksp. Teor. Fiz. 69(5) pp. 1624–1633 (1975).]

    Google Scholar 

  77. C.F. Hooper, Jr., R.C. Manchini, D.P. Kilcrease, L.A. Woltz, MC. Richardson, D.K. Bradley, and P.A. Jaanimagi, in: High Intensity Laser Matter Interactions 913, Society of Photoptical Instrumentation Engineers, pp. 129–137 (1988).

    Google Scholar 

  78. A I. Larkin, Soy. Phys.—JETP 11(6), pp. 1363–1364 (1960) [trans. from Zia Eksp. Teor. Fiz. 38 (6), pp. 1896–1898 (1960).

    Google Scholar 

  79. V.S. Volokitin, Mat. Modelirovanie 3 (7), pp. 51–56 (1991).

    Google Scholar 

  80. E.N. Avrorin, B.K. Vodolaga, N.P. Voloshin, G.V. Kovalenko, V.F. Kuropatenko, V.A. Simonenko, and B.T. Chemovolyuk, Soy. Phys.—JETP 66(2) pp. 347–354 (1988). [trans. from Zh. Eksp. Teor. Fiz. 93(2) pp. 613–626 (1987).]

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kalitkin, N.N., Kuzmina, L.V. (2004). Wide-Range Characteristic Thermodynamic Curves. In: Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I. (eds) High-Pressure Shock Compression of Solids VII. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4048-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4048-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1919-9

  • Online ISBN: 978-1-4757-4048-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics