Skip to main content

Skorohod Embedding and Invariance Principles

  • Chapter
Foundations of Modern Probability

Part of the book series: Probability and Its Applications ((PIA))

  • 3888 Accesses

Abstract

Embedding of random variables; approximation of random walks; functional central limit theorem; laws of the iterated logarithm; arcsine laws; approximation of renewal processes; empirical distribution functions; embedding and approximation of martingales

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • The first functional limit theorems were obtained in (1931b, 1933a) by Kol-Mogorov, who considered special functionals of a random walk. Erdös and Kac (1946, 1947) conceived the idea of an invariance principle that would allow functional limit theorems to be extended from particular cases to a general setting. They also treated some special functionals of a random walk. The first general functional limit theorems were obtained by Donsker (1951–52) for random walks and empirical distribution functions, following an idea of Doob (1949). A general theory based on sophisticated compactness arguments was later developed by Prohorov (1956) and others.

    Google Scholar 

  • Skorohod’s (1965) embedding theorem provided a new and probabilistic approach to Donsker’s theorem. Extensions to the martingale context were obtained by many authors, beginning with Dubins (1968). Lemma 14.19 appears in Dvoretzky (1972). Donsker’s weak invariance principle was supplemented by a strong version due to Strassen (1964), which yields extensions of many a.s. limit theorems for Brownian motion to suitable random walks. In particular, his result yields a simple proof of the Hartman and Wintner (1941) law of the iterated logarithm, which had originally been deduced from some deep results of Kolmogorov (1929).

    Google Scholar 

  • Billingsley (1968) gives many interesting applications and extensions of Donsker’s theorem. For a wide range of applications of the martingale embedding theorem, see Hall and Heyde (1980) and Durrett (1995). Komlós et al. (1975–76) showed that the approximation rate in the Skorohod embedding can be improved by a more delicate “strong approximation.” For an exposition of their work and its numerous applications, see Csörgö and Révész (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kallenberg, O. (2002). Skorohod Embedding and Invariance Principles. In: Foundations of Modern Probability. Probability and Its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4015-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4015-8_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2949-5

  • Online ISBN: 978-1-4757-4015-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics