Skip to main content

Models for residual dependencies

  • Chapter
Explanatory Item Response Models

Part of the book series: Statistics for Social Science and Public Policy ((SSBS))

Abstract

The models discussed in the previous chapters recognize the clustered structure of data one is confronted with most often in psychometrics (i.e., items within persons). The within-person dependencies arising from this clustering are handled through a random effect or latent variable for person p, denoted as θ p. In some cases, there are several major sources of individual differences, and they have to be accounted for by more than one random effect (see Chapter 8 on multidimensionality). Conditional on these random effects, the responses to the different items in the data set should be independent — this requirement is called conditional independence or local (stochastic) independence. However, it appears that in many applications, not all dependence between the responses can be explained by the random effects one assumed to underly the responses. In those cases, it is said that there remain some residual dependencies not accounted for by the model, a phenomenon also denoted as local item dependencies (LIDs). Situations in which residual dependencies may occur are ample. Consider for instance the case where items of a reading test can be subdivided into groups of items each sharing the same reading passage. Data from a test with reading passages may show more dependencies than can be accounted for alone by a single reading ability dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, B.C., Castillo, E., & Sarabia, J.M. (1999). Conditional Specification of Statistical Models. New York: Springer.

    MATH  Google Scholar 

  • Ashford, J.R., & Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535–546.

    Article  Google Scholar 

  • Bahadur, R. (1961). A representation of the joint distribution of responses to n dichotomous items. In H. Solomon (Ed.), Studies in Item Analysis and Prediction (pp. 158–168). Palo Alto: Stanford University Press.

    Google Scholar 

  • Bishop, Y.M., Fienberg, S.E., & Holland, P. (1975). Discrete Multivariate Analysis. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Bollen, K.A. (1989). Structural Equations with Latent Variables. New York: Wiley.

    MATH  Google Scholar 

  • Bonney, G.E. (1987). Logistic regression for dependent binary observations. Biometrics, 43, 951–973.

    Article  MATH  Google Scholar 

  • Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • Chen, W.H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.

    Google Scholar 

  • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347–361.

    Article  MATH  Google Scholar 

  • Connolly, M.A., & Liang, K.-Y. (1988). Conditional logistic regression results for correlated binary data. Biometrika, 75, 501–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D.R. (1972). The analysis of multivariate binary data. Applied Statistics, 21, 113–120.

    Article  Google Scholar 

  • Diggle, P.J., Heagerty, P.J., Liang, K.-Y., & Zeger, S.L. (2002). Analysis of Longitudinal Data (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Douglas, J., Kim, H.R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional covariance functions. Journal of Educational and Behavioral Statistics, 23, 129–151.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. London: Chapman & Hall.

    MATH  Google Scholar 

  • Fahrmeir, L., & Tutz, G. (2001). Multivariate Statistical Modeling Based on Generalized Linear Models (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Fitzmaurice, G.M., Laird, N.M., & Rotnitzky, A.G. (1993). Regression models for discrete longitudinal responses. Statistical Science, 8, 284–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. (2002). Exploratory data analysis for complex models. Technical report, Department of Statistics, Columbia University.

    Google Scholar 

  • Gelman, A., Goegebeur, Y., Tuerlinckx, F., & Van Mechelen, I. (2000). Diagnostic checks for discrete-data regression models using posterior predictive simulations. Applied Statistics, 42, 247–268.

    Google Scholar 

  • Haaijer, M.E., Vriens, M., Wansbeek, T.J., & Wedel, M. (1998). Utility covariances and context effects in conjoint MNP models. Marketing Science, 17, 236–252.

    Article  Google Scholar 

  • Hoskens M., & De Boeck, P. (1997). A parametric model for local item dependencies among test items. Psychological Methods, 2, 261–277.

    Article  Google Scholar 

  • Hoskens M., & De Boeck, P. (2001). Multidimensional componential IRT models. Applied Psychological Measurement, 25, 19–37.

    Article  MathSciNet  Google Scholar 

  • Ip, E. (2000). Adjusting for information inflation due to local dependence in moderately large item clusters. Psychometrika, 65, 73–91.

    Article  MathSciNet  Google Scholar 

  • Ip, E. (2001). Testing for local dependence in dichotomous and polytomous item response models. Psychometrika, 66, 109–132.

    Article  MathSciNet  Google Scholar 

  • Ip, E. (2002). Locally dependent latent trait model and the Dutch identity revisited. Psychometrika, 67, 367–386.

    Article  MathSciNet  Google Scholar 

  • Ip, E., Wang, J.W., De Boeck, P., & Meulders, M. (2003). Locally dependent latent trait models for polytomous responses. Psychometrika. Manuscript accepted for publication.

    Google Scholar 

  • Jannerone, R.J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357–373.

    Article  Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.

    Article  MATH  Google Scholar 

  • Keller, L.A., Swaminathan, H., & Sireci, S.G. (2003). Evaluating scoring procedures for context-dependent item sets. Applied Measurement in Education, 16, 207–222.

    Article  Google Scholar 

  • Lee, L.-F. (1981). Fully recursive probability models and multivariate log-linear probability models for the analysis of qualitative data. Journal of Econometrics, 16, 51–69.

    Article  MATH  Google Scholar 

  • Lesaffre, E., & Molenberghs, G. (1991). Multivariate probit analysis: A neglected procedure in medical statistics. Statistics in Medicine, 10, 1391–1403.

    Article  Google Scholar 

  • Liang, K.-Y., & Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch, C.E., & Searle, S.R. (2001). Generalized, Linear, and Mixed Models. New York: Wiley.

    MATH  Google Scholar 

  • Nerlove, M., & Press, S.J. (1973). Univariate and Multivariate Loglinear and Logistic Models (Report R-1306.) Santa Barbara, CA: Rand Corporation.

    Google Scholar 

  • Prentice, R.L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics, 44, 1033–1048.

    Article  MathSciNet  MATH  Google Scholar 

  • Qu, Y., Williams, G.W., Beck, G.J., & Goormastic, M. (1987) A generalized model of logistic regression for clustered data. Communications in Statistics: Theory and Methodology, 16, 3447–3476.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenbaum, P. (1984). Testing the conditional independence and monotonic-ity assumptions of item response theory. Psychometrika, 49, 425–435.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenbaum, P. (1988). Item bundles. Psychometrika, 53, 349–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, P., & Strauss, R. (1975). The prediction of occupation using multiple logit models. International Economic Review, 16, 471–486.

    Article  Google Scholar 

  • Scott, S., & Ip, E. (2002). Empirical Bayes and item clustering effects in a latent variables hierarchical model: A case study from the National Assessment of Educational Progress. Journal of the American Statistical Association, 97, 409–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Smits, D.J.M., & De Boeck, P. (2003). Random local item dependencies. Paper presented at the 13th International Meeting and the 68th Annual American Meeting of the Psychometric Society, Cagliari, Italy.

    Google Scholar 

  • Smits, D.J.M., De Boeck, P., & Hoskens, M. (2003). Examining the structure of concepts: Using interaction between items. Applied Psychological Measurement, 27, 415–439.

    MathSciNet  Google Scholar 

  • Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models, Psychometrika, 51, 567–577.

    Article  MATH  Google Scholar 

  • Tsai, R.-C., & Böckenholt, U. (2001). Maximum likelihood estimation of factor and ideal point models for paired comparison data. Journal of Mathematical Psychology, 45, 795–811.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuerlinckx, F., & De Boeck, P. (2001). The effect of ignoring item interaction on the estimated discrimination parameter of the 2PLM. Psychological Methods, 6, 181–195.

    Article  Google Scholar 

  • Tuerlinckx, F., De Boeck, P., & Lens, W. (2002). Measuring needs with the Thematic Apperception Test: A psychometric study. Journal of Personality and Social Psychology, 82, 448–461.

    Article  Google Scholar 

  • van den Wollenberg, A.L. (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123–140.

    Article  MATH  Google Scholar 

  • Verbeke, G., & Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer.

    MATH  Google Scholar 

  • Verguts, T., & De Boeck, P. (2000). A Rasch model for learning while solving an intelligence test. Applied Psychological Measurement, 24, 151–162.

    Article  Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.

    Article  MATH  Google Scholar 

  • Verhelst, N.D., & Glas, C.A.W. (1995). Dynamic generalizations of the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds), Rasch Models: Foundations, Recent Developments, and Applications, (pp. 181–201). New York: Springer.

    Google Scholar 

  • Wainer, H., & Kiely, G.L. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational Measurement, 24, 185–201.

    Article  Google Scholar 

  • Wilson, M., & Adams, R.J. (1995). Rasch models for item bundles. Psy-chometrika, 60, 181–198.

    MATH  Google Scholar 

  • Yen, W.M. (1984). Effect of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125–145.

    Article  Google Scholar 

  • Yen, W.M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of Educational Measurement, SO, 187–213.

    Google Scholar 

  • Zeger, S.L., & Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121–130.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuerlinckx, F., De Boeck, P. (2004). Models for residual dependencies. In: De Boeck, P., Wilson, M. (eds) Explanatory Item Response Models. Statistics for Social Science and Public Policy. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3990-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3990-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2323-3

  • Online ISBN: 978-1-4757-3990-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics