Skip to main content

Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems

  • Chapter
Elements of Applied Bifurcation Theory

Part of the book series: Applied Mathematical Sciences ((AMS,volume 112))

Abstract

In this chapter we introduce and discuss the following fundamental notions that will be used throughout the book: topological equivalence of dynamical systems and their classification, bifurcations and bifurcation diagrams, and topological normal forms for bifurcations. The last section is devoted to the more abstract notion of structural stability. In this chapter we will be dealing only with dynamical systems in the state space X = ℝn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  • Andronov, A.A. and Pontryagin, L.S. (1937), ‘Systèmes grossières’, C.R. (Dokl.) Acad. Sci. URSS (N.S.) 14, 247–251.

    Google Scholar 

  • Thom, R. (1972), Stabilité Structurelle et Morphogénèse, Benjamin, New York.

    Google Scholar 

  • Grobman, D. (1959), ‘Homeomorphisms of systems of differential equations’, Dokl. Akad. Nauk SSSR 128, 880–881. In Russian.

    Google Scholar 

  • Hartman, P. (1963), ‘On the local linearization of differential equations’, Proc. Amer. Math. Soc. 14, 568–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman, P. (1964), Ordinary Differential Equations, Wiley, New York.

    MATH  Google Scholar 

  • Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.

    Google Scholar 

  • Arnol’d, V.I. (1973), Ordinary Differential Equations, MIT Press, Cambridge, MA.

    Google Scholar 

  • Hale, J. and Koçak, H. (1991), Dynamics and Bifurcations, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Hadamard, J. (1901), ‘Sur l’itération et let solutions asymptotiques des équations diffiérentialles’, Proc. Soc. Math. France 29, 224–228.

    MATH  Google Scholar 

  • Perron, O. (1930), ‘Die stabilitätsfrage bei differentialgleichungen’, Math. Z. 32, 703–728.

    Article  MathSciNet  MATH  Google Scholar 

  • Kelley, A. (1967), ‘The stable, center stable, center, center unstable and unstable manifolds’, J. Differential Equations 3, 546–570.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirsch, M., Pugh, C. and Shub, M. (1977), Invariant Manifolds, Vol. 583 of Lecture Notes in Mathematics, Springer-Verlag, Berlin.

    Google Scholar 

  • Irwin, M. (1980), Smooth Dynamical Systems, Academic Press, New York.

    MATH  Google Scholar 

  • Hartman, P. (1964), Ordinary Differential Equations, Wiley, New York.

    MATH  Google Scholar 

  • Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.

    Google Scholar 

  • Katok, A. and Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Vol. 54 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Poincaré, H. (1892), Les Méthodes Nouvelles de la Méchanique Céleste, Gauthier-Villars, Paris.

    Google Scholar 

  • Birkhoff, G. (1935), ‘Nouvelles recherches sur les systèmes dynamiques’, Memoriae Pont. Acad. Sci. Novi. Lincaei, Ser. 3 1, 85–216.

    Google Scholar 

  • Smale, S. (1963), Diffeomorphisms with many periodic points, in S. Carins, ed., ‘Dif-ferential and Combinatorial Topology’, Princeton University Press, Princeton, NJ, pp. 63–80.

    Google Scholar 

  • Neimark, Ju.I. (1967), ‘Motions close to doubly-asymptotic motion’, Soviet Math. Dokl. 8, 228–231.

    Google Scholar 

  • Shil’nikov, L.P. (1967b), ‘On a Poincaré-Birkhoff problem’, Math. USSR-Sb. 3, 353–371.

    Article  Google Scholar 

  • Moser, J. (1973), Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Vainberg, M.M. and Trenogin, V.A. (1974), Theory of Branching of Solutions of Nonlinear Equations, Noordhoff International Publishing, Leyden.

    Google Scholar 

  • Chow, S.-N. and Hale, J. (1982), Methods of Bifurcation Theory, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Andronov, A.A. (1933), Mathematical problems of self-oscillation theory, in ‘I All-Union Conference on Oscillations, November 1931’, GTTI, Moscow-Leningrad, pp. 32–71. In Russian.

    Google Scholar 

  • Thom, R. (1972), Stabilité Structurelle et Morphogénèse, Benjamin, New York.

    Google Scholar 

  • Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G. (1973), Theory of Bifurcations of Dynamical Systems on a Plane, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Arnol’d, V.I. (1972), ‘Lectures on bifurcations in versal families’, Russian Math. Surveys 27, 54–123.

    Article  Google Scholar 

  • Takens, F. (1974a), ‘Forced oscillations and bifurcations’, Comm. Math. Inst., Rijkuniversiteit Utrecht 2, 1–111. Reprinted in Global Analysis of Dynamical Systems, Instute of Physics, Bristol, 2001, pp. 1–61.

    Google Scholar 

  • Arnol’d, V.I. (1983), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York.

    Book  Google Scholar 

  • Arnol’d, V.I., Afraimovich, V.S., Il’yashenko, Yu.S. and Shil’nikov, L.P. (1994), Bi-furcation theory, in V.I. Arnol’d, ed., ‘Dynamical Systems V. Encyclopaedia of Mathematical Sciences’, Springer-Verlag, New York.

    Google Scholar 

  • Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Arrowsmith, D. and Place, C. (1990), An Introduction to Dynamical Systems,Cambridge University Press, Cambridge.

    Google Scholar 

  • Wiggins, S. (1990), Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New York.

    Google Scholar 

  • Shil’nikov, L.P. (1970), ‘A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type’, Math. USSR-Sb. 10, 91–102.

    Article  MATH  Google Scholar 

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L. (1998), Methods of Qual-itative Theory in Nonlinear Dynamics. Part I, World Scientific, Singapore.

    Google Scholar 

  • Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L. (2001), Methods of Qual- itative Theory in Nonlinear Dynamics. Part II, World Scientific, Singapore.

    Google Scholar 

  • Peixoto, M. (1962), ‘Structural stability on two dimensional manifolds’, Topology 1, 101–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Wiggins, S. (1990), Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New York.

    Google Scholar 

  • Smale, S. (1961), ‘On gradient dynamical systems’, Ann. of Math. 74, 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Smale, S. (1963), Diffeomorphisms with many periodic points, in S. Carins, ed., ‘Dif-ferential and Combinatorial Topology’, Princeton University Press, Princeton, NJ, pp. 63–80.

    Google Scholar 

  • Smale, S. (1966), ‘Structurally stable systems are not dense’, Amer. J. Math. 88, 491–496.

    Article  MathSciNet  MATH  Google Scholar 

  • Nitecki, Z. (1971), Differentiable Dynamics, MIT Press, Cambridge, MA.

    Google Scholar 

  • Katok, A. and Hasselblatt, B. (1995), Introduction to the Modern Theory of Dynamical Systems, Vol. 54 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuznetsov, Y.A. (2004). Topological Equivalence, Bifurcations, and Structural Stability of Dynamical Systems. In: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol 112. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3978-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3978-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1951-9

  • Online ISBN: 978-1-4757-3978-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics