Skip to main content

Carbon Fiber Composites

  • Chapter
Composite Materials

Part of the book series: Materials Research and Engineering ((MATERIALS))

  • 687 Accesses

Abstract

Carbon fiber composites started out in the 1950s and attained the status of a mature structural material in the 1980s. Not unexpectedly, the aerospace industry has been the biggest user of carbon fiber reinforced polymer matrix composites, followed by the sporting goods industry. The availability of a large variety of carbon fibers (Chap. 2) and an equally large variety of polymer matrix materials (Chap. 3) made it easier for carbon fiber reinforced polymer matrix composites to assume the important position that they have. This is the reason we devote a separate chapter to this class of composites. Epoxy is the most commonly used polymer matrix with carbon fibers. Polyester, polysulfone, polyimide, and thermoplastic resins are also used. Carbon fibers are the major load-bearing components in most such composites. There is, however, a class of carbon fiber composites wherein the excellent electrical conduction characteristics of carbon fibers are exploited; for example in situations where static electric charge accumulation occurs, parts made of thermoplastics containing short fibers are frequently used. As we did for other composite systems, we describe the fabrication, properties, interfaces, and applications of carbon fiber reinforced polymer matrix composites. A special emphasis is given to carbon/ carbon composites, an important subclass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Fritz, W. Huttner, and G. Hartwig, in Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York, 1979, p. 245.

    Book  Google Scholar 

  2. L.E. McAllister and W.L. Lachman, in Fabrication of Composites, North-Holland, Amsterdam, 1983, p. 109.

    Google Scholar 

  3. D.M. Riggs, R.J. Shuford, and R.W. Lewis, in Handbook of Composites, Van Nostrand Reinhold, New York, 1982, p. 196.

    Book  Google Scholar 

  4. CD. Shirrel and F.A. Sandow, in Fibrous Composites in Structural Design, Plenum Press, New York, 1980, p. 795.

    Book  Google Scholar 

  5. T.A. Collings and D.E.W. Stone, Composites, 16, 307 (1985).

    Article  CAS  Google Scholar 

  6. E. Fitzer and M. Heym, Chem. Ind., 663 (Aug. 21, 1976).

    Google Scholar 

  7. R.H. Eriksen, Composites, 7, 189 (1976).

    Article  Google Scholar 

  8. J.B. Sturgeon, in Creep of Engineering Materials, a Journal of Strain Analysis Monograph, 1978, p. 175.

    Google Scholar 

  9. A. Baker, Met. Forum, 6, 81 (1983).

    CAS  Google Scholar 

  10. R.B. Pipes and N.J. Pagano, J. Composite Mater. 1, 538 (1970).

    Google Scholar 

  11. A.J. Klein, Adv. Mater. Proc. 2, 40 (Mar. 1986).

    Google Scholar 

  12. R.J. Diefendorf, in Tough Composite Materials, Noyes Publishing, Park Ridge, NJ, 1985, p. 191.

    Google Scholar 

  13. P. Ehrburger and J.B. Donnet, Philos. Trans. R. Soc. London, A294, 495 (1980).

    Article  Google Scholar 

  14. J.-B. Donnet and R.C. Bansal, Carbon Fibers, Marcel Dekker, New York, 1984, p. 109.

    Google Scholar 

  15. D. Mackee and V. Mimeault, in Chemistry and Physics of Carbon, vol. 8, Marcel Dekker, New York, 1973, p. 151.

    Google Scholar 

  16. D. Clark, N.J. Wadsworth, and W. Watt, in Carbon Fibres, Their Place in Modern Technology, The Plastics Institute, London, 1974, p. 44.

    Google Scholar 

  17. F. Molleyre and M. Bastick, High Temp. High Pressure, 9, 237 (1977).

    CAS  Google Scholar 

  18. L.T. Drzal, M.J. Rich, and P.F. Lloyd, J. Adhesion, 16, (1983).

    Google Scholar 

  19. L.T. Drzal, M.J. Rich, M.F. Koenig, and P.F. Lloyd, J. Adhesion, 16, 133 (1983).

    Article  CAS  Google Scholar 

  20. N.J. Mayer, in Engineering Applications of Composites, Academic Press, New York, 1974, p. 24.

    Google Scholar 

  21. Risk to the Public from Carbon Fibers Released in Civil Aircraft Accidents, NASA SP-448, NASA, Washington DC, 1980.

    Google Scholar 

Suggested Reading

  • A.A. Baker, Met. Forum, 6, 81 (1983).

    CAS  Google Scholar 

  • J. Delmonte, Technology of Carbon and Graphite Fiber Composites, Van Nostrand Reinhold, New York, 1981.

    Google Scholar 

  • J.-B. Donnet and R.C. Bansal, Carbon Fibers, Marcel Dekker, New York, 1984.

    Google Scholar 

  • P. Ehrburger and J.-B. Donnet in Handbook of Fiber Science & Technology, vol. III, High Technology Fibers, Part A, Marcel Dekker, New York, 1985, p. 169.

    Google Scholar 

  • E. Fitzer, Carbon Fibres and Their Composites, Springer-Verlag, Berlin, 1985.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1987). Carbon Fiber Composites. In: Composite Materials. Materials Research and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3912-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3912-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3914-5

  • Online ISBN: 978-1-4757-3912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics