Skip to main content

Fibers

  • Chapter
Composite Materials

Part of the book series: Materials Research and Engineering ((MATERIALS))

  • 695 Accesses

Abstract

Reinforcements need not necessarily be in the form of long fibers. One can have them in the form of particles, flakes, whiskers, discontinuous fibers, continuous fibers, and sheets. It turns out that the great majority of materials is stronger and stiffer in the fibrous form than in any other form: thus the great attraction of fibrous reinforcements. Specifically, in this category, we are most interested in the so-called advanced fibers which possess very high strength and very high stiffness coupled with a very low density. The reader should realize that many naturally occurring fibers can be and are used in situations involving not very high stresses [1,2]. The great advantage in this case, of course, is that of low cost. The vegetable kingdom is, in fact, the largest source of fibrous materials. Cellulosic fibers in the form of cotton, flax, jute, hemp, sisal, and ramie, for example, have been used in the textile industry, while wood and straw have been used in the paper industry. Other natural fibers, such as hair, wool, and silk, consist of different forms of protein. Any discussions of such fibers are beyond the scope of this book. The interested reader, however, is directed to a good review article by Meredith [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.K. Chawla, in Proceedings of the International Conference on the Mechanical Behavior of Materials II, ASM, Metals Park, Ohio, 1976, p. 1920.

    Google Scholar 

  2. K.K. Chawla and A.C. Bastos, in Proceedings of the International Conference on the Mechanical Behavior of Materials III, Pergamon Press, Oxford, 1979, p. 191.

    Google Scholar 

  3. R. Meredith, Contemp. Phys. 11, 43 (1970).

    Article  CAS  Google Scholar 

  4. W.H. Dresner, J. Metals, 21, 17 (Apr. 1969).

    Google Scholar 

  5. E. de Lamotte and A.J. Perry, Fibre Sci. Tech., 3, 157 (1970).

    Article  Google Scholar 

  6. K.L. Loewenstein, The Manufacturing Technology of Continuous Glass Fibers, 2nd ed., Elsevier, New York, 1983.

    Google Scholar 

  7. B. Parkyn (ed.), Glass Reinforced Plastics, Butterworth, London, 1970.

    Google Scholar 

  8. R.E. Lowrie, in Modern Composite Materials, Addison-Wesley, Reading, MA, 1967, p. 270.

    Google Scholar 

  9. C.J. Brinker, D.E. Clark, and D R. Ulrich (eds.), Better Ceramics Through Chemistry, North-Holland, New York, 1984.

    Google Scholar 

  10. T. Davis, H. Palmour, and T. Porter (eds.), Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1984.

    Google Scholar 

  11. S. Sakka, Am. Ceram. Soc. Bull, 64, 1463 (1985).

    CAS  Google Scholar 

  12. E. Weintraub, J. Ind. Eng. Chem., 3, 299 (1911).

    Article  CAS  Google Scholar 

  13. C.P. Talley, J. Appl. Phys., 30, 1114 (1959).

    Article  CAS  Google Scholar 

  14. C.P. Talley, L. Line, and O. Overman, in Boron: Synthesis, Structure, and Properties, Plenum Press, New York, 1960, p. 94.

    Google Scholar 

  15. A.C. van Maaren, O. Schob, and W. Westerveld, Philips Tech. Rev., 35, 125 (1975).

    Google Scholar 

  16. V. Krukonis, in Boron and Refractory Borides, Springer-Verlag, Berlin, 1977, p. 517.

    Chapter  Google Scholar 

  17. J. Vega-Boggio and O. Vingsbo, in 1978 International Conference on Composite Materials, ICCM/2, TMS-AIME, New York, 1978, p. 909.

    Google Scholar 

  18. F. Galasso, D. Knebl, and W. Tice, J. Appl Phys., 38, 414 (1967).

    Article  CAS  Google Scholar 

  19. F. Galasso and A. Paton, Trans. Met. Soc. AIME, 236, 1751 (1966).

    CAS  Google Scholar 

  20. H.E. DeBolt, in Handbook of Composites, Van Nostrand Reinhold, New York, 1982, p. 171.

    Google Scholar 

  21. F.W. Wawner, in Modern Composite Materials, Addison-Wesley, Reading, MA, 1967, p. 244.

    Google Scholar 

  22. J.A. DiCarlo, J. Met. 37, 44 (June 1985).

    Google Scholar 

  23. K.K. Chawla, Mater. Sci. Eng., 48, 137 (1981).

    Article  Google Scholar 

  24. A. Shindo, Rep. Osaka Ind. Res. Inst. No. 317 (1961).

    Google Scholar 

  25. A.A. Baker, Metals Forum, 6, 81 (1983).

    CAS  Google Scholar 

  26. W. Watt, Proc. R. Soc, A319, 5 (1970).

    Google Scholar 

  27. R. Bacon, in Chemistry and Physics of Carbon, vol. 9, Marcel Dekker, New York, 1973, p. 1.

    Google Scholar 

  28. R.J. Diefendorf and E. Tokarsky, Polym. Eng. Sci., 15, 150 (1975).

    Article  CAS  Google Scholar 

  29. H.N. Ezekiel and R.G. Spain, J. Polym. Sci. C, 19, 271 (1967).

    Google Scholar 

  30. W. Watt and W. Johnson, Appl. Polym. Symp., 9, 215 (1969).

    Google Scholar 

  31. D.J. Johnson and C.N. Tyson, Br. J. Appl. Phys., 2, 787 (1969).

    Google Scholar 

  32. R. Perret and W. Ruland, J. Appl. Crystallogr., 3 (1970) 525.

    Article  CAS  Google Scholar 

  33. S.C. Bennett and D.J. Johnson, in 5th International Carbon and Graphite Conference, Society of the Chemical Industry, London, 1978, p. 377.

    Google Scholar 

  34. S.C. Bennett and D.J. Johnson, Carbon, 17, 25 (1979).

    Article  CAS  Google Scholar 

  35. O.T. Inal, N. Leca, and L. Keller, Phys. Status Solidi, 62, 681 (1980).

    Article  CAS  Google Scholar 

  36. S.C. Bennet, D.J. Johnson, and W. Johnson, J. Mater. Sc., 18, 3337 (1983), Chapmann & Hall.

    Article  Google Scholar 

  37. A. Fourdeux, R. Perret, and W. Ruland, in Carbon Fibres: Their Composites and Applications, The Plastics Institute, London, 1971, p. 57.

    Google Scholar 

  38. L.S. Singer, in Ultra-High Modulus Polymers, Applied Science Publishers, Essex, England, 1979, p. 251.

    Google Scholar 

  39. J.P. Riggs, in Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, 1985, p. 640.

    Google Scholar 

  40. J.S. Murday, D.D. Dominguez, J.A. Moran, W.D. Lee, and R. Eaton, Synth. Met. 9, 397 (1984).

    Article  CAS  Google Scholar 

  41. P.J. Barham and A. Keller, J. Mater. Sci., 20, 2281 (1985).

    Article  CAS  Google Scholar 

  42. G. Capaccio, A.G. Gibson, and I.M. Ward, in Ultra-High Modulus Polymers, Applied Science Publishers, London, 1979, p. 1.

    Google Scholar 

  43. B. Kalb and A.J. Pennings, J. Mater. Sci., 15, 2584 (1980).

    Article  CAS  Google Scholar 

  44. J. Smook and A.J. Pennings, J. Mater. Sci., 19, 31 (1984).

    Article  CAS  Google Scholar 

  45. K.A. Hodd and D.C. Turley, Chem. Br. 14, 545 (1978).

    CAS  Google Scholar 

  46. P.W. Morgan, Plast. Rubber: Mater. Appl., 4, 1 (Feb. 1979).

    CAS  Google Scholar 

  47. E.E. Magat, Philos. Trans. R. Soc. London, A296, 463 (1980).

    Article  Google Scholar 

  48. S.L. Kwolek, P.W. Morgan, J.R. Schaefgen, and L.W. Gulrich, Macromolecules, 10, 1390 (1977).

    Article  CAS  Google Scholar 

  49. D. Tanner, A.K. Dhingra, and J.J. Pigliacampi, J. Met., 38, 21 (Mar. 1986).

    CAS  Google Scholar 

  50. C.C. Chiao and T.T. Chiao, in Handbook of Composites, Van Nostrand Reinhold, New York, 1982, p. 272.

    Chapter  Google Scholar 

  51. M. Jaffe and R.S. Jones, in Handbook of Fiber Science & Technology, vol. III, High Technology Fibers, Part A, Marcel Dekker, New York, 1985, p. 349.

    Google Scholar 

  52. M.G. Dobb, D.J. Johnson, and B.P. Saville, Philos. Trans. R. Soc. London, A294, 483 (1980).

    Article  Google Scholar 

  53. A.R. West. ZJ. Mater. Sci., 16, 2025 (1981).

    Article  Google Scholar 

  54. S.J. DeTeresa, S.R. Allen, R.J. Farris, and R.S. Porter, J. Mater. Sci., 19, 57 (1984).

    Article  Google Scholar 

  55. A.K. Dhingra, Philos. Trans. R. Soc. London, A294, 411 (1980).

    Article  Google Scholar 

  56. K.S. Mazdiyasni, Ceram. International, 8, 42 (1982).

    Article  CAS  Google Scholar 

  57. H.E. DeBolt, V.J. Krukonis, and F.E. Wawner, in Silicon Carbide — 1973, University of South Carolina Press, Columbia, SC, 1974, p. 168.

    Google Scholar 

  58. S. Yajima, K. Okamura, J. Hayashi, and M. Omori, J. Am. Ceram. Soc, 59, 324 (1976)

    Article  CAS  Google Scholar 

  59. S. Yajima, Philos. Trans. R. Soc. London, A294, 419 (1980).

    Article  Google Scholar 

  60. K.J. Wynne and R.W. Rice, Ann. Rev. Mater. Sci., 15, 297 (1984).

    Article  Google Scholar 

  61. C.-H. Andersson and R. Warren, Composites, 15, 16 (Jan. 1984).

    Article  CAS  Google Scholar 

  62. R. Warren and C.-H. Andersson, Composites, 15, 101 (Apr. 1984).

    Article  CAS  Google Scholar 

  63. S.G. Wax, Am. Ceram. Soc. Bull., 64, 1096 (1985).

    Google Scholar 

  64. K. Okamura, personal communication, 1986.

    Google Scholar 

  65. G. Simon and A.R. Bunsell, J. Mater. Sci., 19, 3649 (1984).

    Article  CAS  Google Scholar 

  66. J.V. Milewski, J.L. Sandstrom, and W.S. Brown, in Silicon Carbide — 1973, University of South Carolina Press, Columbia, S C, 1974, p. 634.

    Google Scholar 

  67. J.-G. Lee and I. B. Cutler, Am. Ceram. Soc. Bull., 54, 195 (1975).

    CAS  Google Scholar 

  68. J.V. Milewski, F.D. Gac, J.J. Petrovic, S.R. Skaggs, J. Mater. Sci., 20, 1160 (1985).

    Article  CAS  Google Scholar 

  69. J.J. Petrovic. J.V. Milewski. D.L. Rohr, and F.D. Gac, J. Mater. Sci., 20, 1167 (1985).

    Article  Google Scholar 

  70. R.R. Wills, R.A. Mankle, and S.P. Mukherjee, Am. Ceram. Soc. Bull., 62, 904 (1983).

    CAS  Google Scholar 

  71. J. Economy and R. Lin, in Boron and Refractory Borides, Springer-Verlag, New York, 1977, p. 552.

    Chapter  Google Scholar 

  72. A. Lindemanis, in Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1983.

    Google Scholar 

  73. W.D. Smith, in Boron and Refractory Borides, Springer-Verlag, Berlin, 1977, p. 541.

    Chapter  Google Scholar 

  74. R.A. Signorelli, in Advances in Composite Materials, Japan Society of Composite Materials, Tokyo, 1982, p. 37.

    Google Scholar 

  75. A. Kelly and H. Lilholt, Philos. Mag., 20, 311 (1969).

    Article  CAS  Google Scholar 

  76. K.K. Chawla and M. Metzger, J. Mater. Sci., 7, 34 (1972).

    Article  CAS  Google Scholar 

  77. K.K. Chawla, Philos. Mag., 28, 55 (1973).

    Article  Google Scholar 

  78. K.K. Chawla and M. Metzger, Met. Trans. A., 8A, 1681 (1977).

    Article  CAS  Google Scholar 

  79. D. Stöckel, in Proceedings of the 1975 International Conference on Composite Materials, TMS-AIME, New York, vol. 2, 1976, p. 484.

    Google Scholar 

  80. T.R. Anantharaman (ed.), Metallic Glasses, Trans. Tech. Pub., Aedermannsdorf, Switzerland, 1984, p. 1.

    Google Scholar 

  81. H.J. Guntherodt and H. Beck (eds.), Metallic Glasses, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  82. C. Hargitai, I. Bakonyi, and T. Kemeny (eds.), Metallic Glasses: Science & Technology, Central Research Institute of Physics, Budapest, Hungary, 1981.

    Google Scholar 

  83. R. Hasegawa (ed.), The Magnetic, Chemical, and Structural Properties of Glassy Metallic Alloys, CRC Press, Boca Raton, FL, 1981.

    Google Scholar 

Suggested Reading

  • P. Bracke, H. Schurmans, and J. Verhoest, Inorganic Fibers and Composite Materials, Pergamon Press, Oxford, 1983.

    Google Scholar 

  • C.C. Chiao and T.T. Chiao, in Handbook of Composities, G. Lubin (ed.), Van Nostrand Reinhold. New York, 1982, p. 272.

    Chapter  Google Scholar 

  • T. Davis, H. Palmour, and T. Porter (eds.), Emergent Process Methods for High Technology Ceramics, Plenum Press, New York, 1982.

    Google Scholar 

  • J. Delmonte, Technology of Carbon and Graphite Fiber Composites, Van Nostrand Reinhold, New York, 1981.

    Google Scholar 

  • R.J. Diefendorf and E. Tokarsky, Polym. Eng. Sci., 15, 150 (1975).

    Article  CAS  Google Scholar 

  • J.B. Donnet and R.C. Bansal, Carbon Fibers, Marcel Dekker, New York, 1984.

    Google Scholar 

  • E. Fitzer, Carbon Fibres and Their Composites, Springer-Verlag, Berlin, 1985.

    Book  Google Scholar 

  • M. Jaffe and R.S. Jones, High Performance Aramid Fibers, in Handbook of Fiber Science and Technology, vol. III, High Technology Fibers.

    Google Scholar 

  • M. Langley (ed.), Carbon Fibres in Engineering, McGraw-Hill, London, 1973.

    Google Scholar 

  • J. Preston, Aramid Fibers in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 4, Wiley-Interscience, New York, 1978.

    Google Scholar 

  • W. Watt and B. V. Perov (eds.), Strong Fibres, vol 1. in the series Handbook of Composites, North-Holland, Amsterdam, 1985.

    Google Scholar 

  • K.J. Wynne and R.W. Rice, Ceramics via Polymer Pyrolysis, Ann. Rev. Mater. Sci., 14, 297 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1987). Fibers. In: Composite Materials. Materials Research and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3912-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3912-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3914-5

  • Online ISBN: 978-1-4757-3912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics