Skip to main content

Direct Integration of Microstrip Antennas

  • Chapter
  • 1238 Accesses

Abstract

As the popularity of wireless communications continues to grow and the demand for more sophisticated applications and therefore required bandwidth increases, it is imperative that technical solutions are found to ensure these needs can be met. There have been a variety of methods that have helped overcome some of the issues related to the transmission of higher bit rates/bandwidth such as using higher order modulation techniques and smart base stations, however, most of the proposals are relatively short-term in nature. Fundamental to any advancement in wireless services is to increase the frequency of operation of the communication link thereby allowing more useable bandwidth and information to be transferred. For this reason there have been many investigations into wireless systems at higher transmission frequencies, well into the millimeter-wave ranges (26 – 110 GHz). Such systems should overcome the inherent limitations and issues associated with the lower microwave frequency spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. ] D. M. Pozar, Microwave Engineering – Second Edition, John Wiley and Sons Inc., New York, 1998.

    Google Scholar 

  2. G. H. Smith, R. B. Waterhouse, A. Nirmalathas, D. Novak, C. Lim, and O. Sevimli, “A broadband integrated photonic-antenna interface for multiservice millimeter-wave fiber-wireless applications,” MWP 2001, Long Beach California, pp. 173 – 176, October 2001.

    Google Scholar 

  3. R. B. Waterhouse, “Stacked patches using high and low dielectric constant material combination,” IEEE Transactions Antennas & Propagation, vol. 47, pp. 1767 – 1771, December 1999.

    Article  Google Scholar 

  4. Z. Zhang and C. P. Wong, “Assembly of Lead Free Bumped Flip-Chip with No-Flow Underfills,” IEEE Trans. Electronics Packaing Manufacturing, Vol. 25, pp. 113 – 119, April 2002.

    Article  Google Scholar 

  5. L. Harle and L. P. Katehi, A Vertically Integrated Micromachined Filter,” IEEE Trans. Microwaves Theory Techniques, Vol. 50, pp. 263 – 2068, September 2002.

    Google Scholar 

  6. Y. Furuhama, “Research and developments of millimeter-wave technologies for advanced communications”, 3rd RIEC Symp. Novel Techns & Appls. of MillimeterWaves, Sendai, Japan, pp. 1 – 6, December 1998.

    Google Scholar 

  7. Y. Qian and T. Itoh, “Progress in Active Integrated Antennas and Their Applications”, IEEE Trans. Microwave Theory and Techniques, 1998, vol. 46, no. 11, pp. 1891–1900.

    Article  Google Scholar 

  8. High Frequency Structure Simulator — Version 5.5, Agilent Technologies, 2000.

    Google Scholar 

  9. S. D. Targonski, R. B. Waterhouse and D. M. Pozar, “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas”, IEEE Trans. Antennas and Propagation, 1998, vol. 46, no. 9, pp. 1245–1251.

    Article  Google Scholar 

  10. Ensemble 6.0, Ansoft, 1999.

    Google Scholar 

  11. K. C. Gupta, R. Garg and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, 1979.

    Google Scholar 

  12. M. Riaziat, R. Majidiahy and I-J. Feng, “Propagation modes and dispersion characteristics of coplanar waveguides”, IEEE Trans. Microwave Theory and Techniques, March 1990, vol. 38, pp. 245–251.

    Article  Google Scholar 

  13. W. Menzel and W. Grabherr, “A microstrip patch antenna with coplanar feed line”, IEEE Microwave and Guided Wave Letters, Nov. 1991, vol. 1, pp. 340–342.

    Article  Google Scholar 

  14. L. Giauffret, J. M. Laheurte and A. Papiernik, “Experimental and theoretical investigations of a new compact large bandwidth aperture-coupled microstrip antenna”, Electronics Letters, 1995, vol. 31, no. 25, pp. 2139–2140.

    Article  Google Scholar 

  15. L. Giauffret and J. M. Laheurte, “Theoretical and experimental characterisation of CPW-fed microstrip antennas”, IEE Proc. Microw. Antennas Propag., 1996, vol. 143, no. 1, pp. 13–17.

    Article  Google Scholar 

  16. K. Hettak and G. Delisle, “A novel antenna configuration for millimetre wave communication systems,” IEEE Antennas Propag. Symp. Dig., 1998, pp. 2092 – 2095.

    Google Scholar 

  17. K. Hettak, G. Y. Delisle and M. G. Stubbs, “A novel variant of dual polarized CPW fed patch antenna for broadband wireless communications”, IEEE Antennas Propag. Symp. Dig., Utah USA, July 2000, pp. 286 – 289.

    Google Scholar 

  18. M. Stotz, G. Gottwald, H. Haspeklo and J. Wenger, “Planar single- and dualpolarized aperture coupled E-band antennas on GaAs using SiNx-membranes”, IEEE Antennas Propag. Symp. Dig., 1996, pp. 1540 –1543.

    Google Scholar 

  19. K. Siwiak, Radiowave Propagation and Antennas for Personal Communications, Artech House, Boston, 1998.

    Google Scholar 

  20. G. Rosol, “Environmental factors contribute to antenna selection”, Microwaves & RF, August 1995, pp. 117 –123.

    Google Scholar 

  21. B. G. Porter, L. L. Rauth, J. R. Mura, and S. S. Gearhart, “Dual-Polarized SlotCoupled Patch Antennas on Duroid with Teflon Lenses for 76.5-GHz Automotive Radar Systems”, IEEE Trans. Antennas and Propagation, 1999, vol. 47, no. 12, pp 1836–1842.

    Article  Google Scholar 

  22. S. D. Targonski and R. B. Waterhouse, ‘Reflector elements for aperture and aperture coupled microstrip antennas’, IEEE Antennas Propag. Symp. Dig., 1997, vol. 3, pp. 1840–1843.

    Google Scholar 

  23. D. M. Pozar, “Analysis of an infinite phased array of aperture coupled microstrip patches,” IEEE Trans. Antenna Propagat., vol. 37, pp. 418 – 424, April 1989.

    Article  Google Scholar 

  24. D. R. Jackson, J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheitt and S. A. Long, “Microstrip Patch Designs That Do Not Excite Surface Waves,” IEEE Trans. Antennas Propagat., vol. AP-41, pp. 1026 –1037, August 1993.

    Article  Google Scholar 

  25. D. M. Kokotoff, R. B. Waterhouse, C. R. Birtcher and J. T. Aberle, “Annular ring coupled circular patch with enhanced performance,” Electronics Letters, vol. 33, pp. 2000 – 2001, Nov. 1997.

    Article  Google Scholar 

  26. D. M. Kokotoff, R. B. Waterhouse and J. T. Aberle, “On the use of attachment modes in the analysis of printed antennas,” Progress in Electromagnetics Research, Nice France, July 1998.

    Google Scholar 

  27. R. B. Waterhouse, “Improving the scan performance of probe-fed microstrip patch arrays,” IEEE Transactions Antennas & Propagation, vol. 43, pp. 705 – 712, July 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waterhouse, R.B. (2003). Direct Integration of Microstrip Antennas. In: Microstrip Patch Antennas: A Designer’s Guide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3791-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3791-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5338-4

  • Online ISBN: 978-1-4757-3791-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics