Skip to main content

Small Microstrip Patch Antennas

  • Chapter
  • 1281 Accesses

Abstract

As stated in Chapter 1, one of the many advantages of microstrip patch technology over its competitors is its low profile and hence small volume. Another key advantage of this printed antenna is the relative ease in which it can be connected to the feed network, as was highlighted in Chapter 2. For these reasons antenna design engineers deduced that microstrip patch antennas could be utilized for applications requiring where there was very limited space to mount the antenna. One such global application is for wireless communication handset terminals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. E. Padgett, C. G. Gunther and T. Hattori, “Overview of wireless personal communications,” IEEE Communications Magazine, pp. 28–41, Jan. 1995.

    Google Scholar 

  2. T. S. Rappaport, “Future trends of mobile and personal communications,” (Invited paper) SBMO/IEEE MTT-S IMOC’95 Proceedings, pp. 387–395.

    Google Scholar 

  3. R. Prasad, “Overview of wireless personal communications: Microwave Perspective,” IEEE Communication Magazine, pp. 104–108, April 1997.

    Google Scholar 

  4. J. L. Finol and J.G Mielke, “Past and future directions in cellar telephony,” (Invited paper) IEEE AP-S, pp. 7–13,1998.

    Google Scholar 

  5. T. Ojanpera and R. Prasad, “An overview of third-generation wireless personal communications: A European Perspective,” IEEE Personal Communications, pp. 59–65, Dec. 1998.

    Google Scholar 

  6. D. M. Pozar, “An overview of wireless systems and antennas,” IEEE Proc. AP-S, pp. 566–569, 2000.

    Google Scholar 

  7. K. Hirasawa and M. Haneishi, Analysis, design, and measurement of small and lowprofile antennas, Artech House, Inc., 1992.

    Google Scholar 

  8. K. Fujimoto and J. R. James, Mobile Antenna Systems Handbook, Norwood, MA: Artech House, 1994.

    Google Scholar 

  9. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd edition, John Wiley & Sons Inc., 1997.

    Google Scholar 

  10. R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd Edition, McGrawHill, 1984.

    Google Scholar 

  11. Z. D. Liu, P. S. Hall and D. Wake, “Dual-frequency planar inverted-F antenna,” IEEE Trans. Antennas & Propagat., vol. 45, pp. 1451–1458, Oct. 1997.

    Article  Google Scholar 

  12. M. A. Jensen and Y. Rahmat-Samii, “Performance analysis of antennas for hand-held transceivers using FDTD,” IEEE Trans. Antennas & Propagat., vol. AP-42, (8), pp. 1106–1113, Aug. 1994.

    Article  Google Scholar 

  13. P. Salonen, M. Keskilammi and M. Kivikoski, “Single-feed dual-band planar inverted-F antenna using U-shaped slot,” IEEE Trans. Antennas & Propagat., vol. AP-48, (8), pp. 1262–1264, Aug. 2000.

    Google Scholar 

  14. C. R. Rowell and R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handset,” IEEE Trans. Antennas & Propagat., vol. 45, pp. 837–843, 1997.

    Article  Google Scholar 

  15. R. E. Munson, “Conformal microstrip antennas and microstrip phased arrays,” IEEE Trans. Antennas & Propagat., vol. AP-42, (1), pp. 74–78, Jan. 1974.

    Article  Google Scholar 

  16. J. W. Howell, “Microstrip antennas,” IEEE Trans. Antennas & Propagat., vol. AP-23, (1), pp. 90–93, Jan. 1975.

    Article  MathSciNet  Google Scholar 

  17. K. R. Carver and J. W. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas & Propagat., vol. AP-29, (1), pp. 2–24, Jan. 1981.

    Article  Google Scholar 

  18. T. K. Lo, Y. Hwang, E. K. W. Lam and B. Lee, “Miniature aperture-coupled microstrip antenna of very high permittivity,” Electron. Lett., vol 33, pp. 9–10, Jan. 1997.

    Article  Google Scholar 

  19. G. A. Kyriacou and J. N. Sahalos, “Analysis of a probe-fed short-circuited microstrip antenna,” IEEE Trans. Vehicular Tech., vol. 45, (3), pp. 427–430, Aug. 1996.

    Article  Google Scholar 

  20. A. Boag, Y. Shimony and R. Mittra, “Dual band cavity-backed quarter-wave patch antenna,” IEEE AP-S Digest, vol. 4, pp. 2124–2127, 1995.

    Google Scholar 

  21. R. B. Waterhouse, “Small microstrip patch antenna,” Electron. Lett., vol. 31, pp. 604–605, April 1995.

    Article  Google Scholar 

  22. K.-L. Wong and Y. F. Lin, “Small broadband rectangular microstrip antenna with chip-resistor loading,” Electron. Lett., pp. 1593–1594, Sept. 1997.

    Google Scholar 

  23. J. -H. Lu, “Single-feed dual-frequency rectangular microstrip antennas with pair of step-slots,” Electron. Lett., vol. 35, (5), pp. 354–355, Mar. 1999.

    Article  Google Scholar 

  24. D. M. Pozar, Microwave Engineering — Second Edition, John Wiley and Sons Inc., New York, 1998.

    Google Scholar 

  25. J.T. Aberle, D.M. Pozar and C.R. Birtcher, “Evaluation of input impedance and radar cross section of probe fed microstrip patch elements using an accurate feed model”, IEEE Trans. Antennas Propagat., AP-39, pp. 1691–1697, December 1991.

    Article  Google Scholar 

  26. M. Sanad, “Effect of the shorting posts on short circuit microstrip antennas”, Proc. IEEE AP-Symp., pp. 794–797, June 1994.

    Google Scholar 

  27. I. Park and R. Mittra, “Aperture-coupled small microstrip antenna”, Electron. Lett., Vol. 32, pp. 1741–1742, Sept. 1996.

    Article  Google Scholar 

  28. R. B. Waterhouse and S. D. Targonski, “Performance of microstrip patches incorporating a single shorting post”, Proc. IEEE AP-Symp., pp. 29–32, July 1996.

    Google Scholar 

  29. J. Huang, Personal Communication.

    Google Scholar 

  30. D. H. Schaubert, “A review of some microstrip antenna characteristics”, Microstrip Antenna Design, IEEE Press, pp.59–67, 1995.

    Google Scholar 

  31. Ensemble 5.1, Ansoft, 1998.

    Google Scholar 

  32. R. B. Waterhouse, S. D. Targonski and D. M. Kokotoff, “Design and performance of small printed Antennas”, IEEE Trans. Antennas & Prop., vol. AP-46, pp. 1629–1633, Nov.1998.

    Google Scholar 

  33. J. T Rowley and R. B. Waterhouse, “Performance of shorted microstrip patch antennas for mobile communications handset at 1800 MHz,” IEEE Trans. Antennas & Prop. Vol. AP-47, pp. 815–822, May. 1999.

    Article  Google Scholar 

  34. M. A. Jensen and Y. Rahmat-Samii, “EM interaction of handset antennas and a human in personal communications”, Proc. IEEE, vol. 83, pp. 7–17, Jan. 1995.

    Article  Google Scholar 

  35. D’Inzeo, “Proposal for numerical canonical models in mobile communications” in Biomedical Effects of Electromagnetic Fields– Reference Models in Mobile Communications, D. Simunic, Ed. Rome, Italy: COST244, pp. 1–7, 1994.

    Google Scholar 

  36. R. B. Waterhouse, “Small printed antenna easily integrated into a mobile handset terminal,” Electron. Lett., Vol. 34, pp. 1629–1631, Aug. 1998.

    Article  Google Scholar 

  37. F. Ali and J. B. Horton, “Introduction to special issue on emerging commercial and consumer circuits, systems, and their applications,” IEEE Trans. Microwave Theory Tech., Vol. 43, pp. 1633–1638, July 1995.

    Google Scholar 

  38. R. B. Waterhouse, “Small printed antenna easily integrated into a mobile handset terminal,” Electronics Letters, vol. 34, pp. 1629–1631, Aug. 1998.

    Article  Google Scholar 

  39. R. B. Waterhouse, J. T. Rowley and K. H. Joyner, “A stacked shorted patch,” Electronics Letters, vol. 34, pp. 612– 614, April 1998.

    Article  Google Scholar 

  40. J. Rashed, and C.-T. Tai, “A new cIass of resonant antennas”, IEEE Trans. Antennas & Propagat, vol. 39, pp. 1428–1430, Sept. 1991.

    Article  Google Scholar 

  41. P. S. Hall, Private Communication.

    Google Scholar 

  42. XFDTD (1997), User’s manual for XFDTD the X-Window Finite Difference Time Domain Graphical User Interface for Electromagnetic Calculations, Version 4.03, Remcom Inc., June 1997.

    Google Scholar 

  43. R. B. Waterhouse, “Printed antenna suitable for mobile communication handsets”, Electron. Lett., Vol. 33, pp. 1831–1832, Oct. 1997.

    Article  Google Scholar 

  44. Zealand Software Inc., IE3DTM Version 6.01.

    Google Scholar 

  45. D. M. Kokotoff, J. T. Aberle and R.B. Waterhouse, “Rigorous analysis of probe-fed printed annular rings,” IEEE Trans. Antennas & Prop., vol. AP-47, Feb. 1999.

    Google Scholar 

  46. J. Huang, “A technique for an array to generate circular polarization with linearly polarized elements,” IEEE Trans. Antennas & Propagat., vol. 34, pp. 1113–1124, Sept. 1986.

    Article  Google Scholar 

  47. C.–Y. Huang, J.–Y. Wu and K.–L. Wong, “Broadband circularly polarized square microstrip antenna using chip-resistor loading,” IEE Proc. Micro. Antennas & Propagat., vol. 146, pp. 94–96, Feb. 1999.

    Article  Google Scholar 

  48. M. A. Jensen and Y. Rahmat-Samii, “Performance of circularly polarized patch antennas for personal satellite communications including biological effects,” Proc. AP-S, Newport Beach, Californa, USA, pp. 1112–1115, June 1995.

    Google Scholar 

  49. P. S. Hall, J. S. Dahele and J. R. James, “Design principles of sequentially fed, wide bandwidth, circularly polarized microstrip antennas,” IEE Proc. H, vol. 136, pp. 381–389, Oct. 1989.

    Google Scholar 

  50. D. F. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, E. Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2059–2074, Nov. 1999.

    Article  Google Scholar 

  51. R. Coccoli, F. Yang, K. Ma, T. Itoh, “Aperture-Coupled Patch Antenna on UC-PBG Substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2123–2130, Nov. 1999.

    Article  Google Scholar 

  52. C. Gabriel, “Compilation of the dielectric properties of body tissues at RF and microwave frequencies”, Brooks Air Force Base, report no. AI/OE-TR-1996–0037, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waterhouse, R.B. (2003). Small Microstrip Patch Antennas. In: Microstrip Patch Antennas: A Designer’s Guide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3791-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3791-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5338-4

  • Online ISBN: 978-1-4757-3791-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics