Skip to main content

Abstract

The coverage of electromagnetics in this chapter is somewhat brief, especially the physical aspects of the theory, since it is assumed that the reader is familiar with basic field theory at an undergraduate or beginning graduate level. For a more extensive introduction to electromagnetic theory, the references at the end of this chapter may be consulted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Rothwell, E.J. and Cloud, M.J. (2001). Electromagnetics, Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  2. Collin, R.E. (1991). Field Theory of Guided Waves, 2nd ed., New York: IEEE Press.

    MATH  Google Scholar 

  3. Tai, C.T. (1994). Dgadic Green Functions in Electromagnetic Theory, 2nd ed., New York: IEEE Press.

    Google Scholar 

  4. Portis, A.M. (1978). Electromagnetic Fields: Sources and Media, New York: Wiley.

    Google Scholar 

  5. Kong, J.A. (1990). Electromagnetic Wave Theory, 2nd ed., New York: Wiley.

    Google Scholar 

  6. Hansen, T.B. and Yaghjian, A.D. (1999). Plane-Wave Theory of TimeDomain Fields, New York: IEEE Press.

    Book  Google Scholar 

  7. Gel’fand, I.M. and Shilov, G.E. (1964). Generalized Functions, Vol. I, New York: Academic Press.

    MATH  Google Scholar 

  8. Van Bladel, J. (1991). Singular Electromagnetic Fields and Sources, Oxford: Clarendon Press.

    Google Scholar 

  9. Kellogg, O.D. (1929). Foundations of Potential Theory, New York: Dover.

    Google Scholar 

  10. Budak, B.M. and Fomin, S.V. (1973). Multiple Integrals, Field Theory and Series, Moscow: MIR Publishers.

    MATH  Google Scholar 

  11. Courant, R. (1974). Introduction to Calculus and Analysis, Vol. II, New York: Wiley.

    MATH  Google Scholar 

  12. Mikhlin, S.G. (1965). Multidimensional Singular Integrals and Integral Equations, Oxford: Pergamon Press.

    MATH  Google Scholar 

  13. Müller, C. (1969). Foundations of the Mathematical Theory of Electromagnetic Waves, New York: Springer-Verlag.

    MATH  Google Scholar 

  14. Yaghjian, A.D. (1980). Electric dyadic Green’s functions in the source region, IEEE Proc., Vol. 68, pp. 248–263, Feb.

    Article  Google Scholar 

  15. Yaghjian, A.D. (1985). Maxwellian and cavity electromagnetic fields within continuous sources, Am. J. Phys., Vol. 53, pp. 859–863, Sept.

    Article  Google Scholar 

  16. Silberstein, M. (1991). Application of a generalized Leibnitz rule for calculating electromagnetic fields within continuous source regions, Radio Science, Vol. 26, pp. 183–190, Jan.—Feb.

    Article  Google Scholar 

  17. Viola, M.S. and Nyquist, D.P. (1988). An observation on the Sommerfeld-integral representation of the electric dyadic Green’s function for layered media, IEEE Trans. Microwave Theory Tech., Vol. 36, pp. 1289–1292, Aug.

    Article  MathSciNet  Google Scholar 

  18. Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, Vol. II, New York: Interscience.

    Google Scholar 

  19. Lee, S.W., Boersma, J., Law, C.L., and Deschamps, G.A. (1980). Singularity in Green’s function and its numerical evaluation, IEEE Trans. Ant. Prop., Vol. AP-28, pp. 311–317, May.

    MathSciNet  Google Scholar 

  20. Asvestas, J.S. (1983). Comments on “Singularity in Green’s function and its numerical evaluation,” IEEE Trans. Ant. Prop., Vol. AP-31, pp. 174–177, Jan.

    Article  MathSciNet  Google Scholar 

  21. Fikioris, J.G. (1965). Electromagnetic field inside a current-carrying region, J. Math. Phys., Vol. 6, pp. 1617–1620, Nov.

    Article  MathSciNet  Google Scholar 

  22. Levine, H. and Schwinger, J. (1950). On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen, Comm. Pure and Appl. Math., Vol. III, pp. 355–391.

    Article  MathSciNet  Google Scholar 

  23. Ball, J.A.R. and Khan, P.J. (1980). Source region electric field derivation by a dyadic Green’s function approach, IEE Proc., Vol. 127, Part H, no. 5, pp. 301–304, Oct.

    Google Scholar 

  24. Chew, W.C. (1990). Waves and Fields in Inhomogeneous Media, New York: IEEE Press.

    Google Scholar 

  25. Harrington, R.F. (1961). Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill.

    Google Scholar 

  26. Hanson, G.W. (1996). A numerical formulation of dyadic Green’s functions for planar bianisotropic media with applications to printed transmission lines, IEEE Trans. Microwave Theory Tech., Vol. 44, pp. 144–151, Jan.

    Article  MathSciNet  Google Scholar 

  27. Samokhin, A.B. (1990). Investigation of problems of the diffraction of electromagnetic waves in locally non-uniform media, Comput. Maths. Math. Phys., Vol. 30, no. 1, pp. 80–90.

    Article  MathSciNet  Google Scholar 

  28. Samokhin, A.B. (1992). Diffraction of electromagnetic waves by a locally non-homogeneous body and singular integral equations, Comput. Maths. Math. Phys., Vol. 32, no. 5, pp. 673–686.

    MathSciNet  MATH  Google Scholar 

  29. Samokhin, A.B. (1993). Integral equations of electrodynamics for three-dimensional structures and iteration methods for solving them (a review).” J. Comm. Tech. Electron., Vol. 38, no. 15, pp. 15–34.

    Google Scholar 

  30. Samokhin, A.B. (1994). An iterative method for the solution of integral equations applied to a scattering problem on a three-dimensional transparent body, Diff. Equations, Vol. 30, no. 12, pp. 1987–1997.

    MathSciNet  MATH  Google Scholar 

  31. Colton, D. and Kress, R. (1998). Inverse Acoustic and Electromagnetic Scattering Theory, New York: Springer.

    MATH  Google Scholar 

  32. Born, N. and Wolf, E. (1980). Principles of Optics, 6th ed., New York: Pergamon Press.

    Google Scholar 

  33. Peterson, A.F., Ray, S.L., and Mittra, R. (1998). Computational Methods for Electromagnetics, New York: IEEE Press.

    Google Scholar 

  34. Cessenat, M. (1996). Mathematical Methods in Electromagnetism, Singapore: World Scientific.

    MATH  Google Scholar 

  35. Mattuck, A. (1999). Introduction to Analysis, Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  36. Jones, D.S. (1986). Acoustic and Electromagnetic Waves, Oxford: Clarendon Press.

    Google Scholar 

  37. Jones, D.S. (1964). The Theory of Electromagnetism, Oxford: Pergamon Press.

    MATH  Google Scholar 

  38. Jackson, J.D. (1975). Classical Electrodynamics, 2nd ed., New York: John Wiley.

    MATH  Google Scholar 

  39. Van Bladel, J. (1985). Electromagnetic Fields, Washington: Hemisphere.

    Google Scholar 

  40. Lindell, I.V. (1992). Methods for Electromagnetic Field Analysis, Oxford: Clarendon Press.

    Google Scholar 

  41. Stratton, J. (1941). Electromagnetic Theory, New York: McGraw-Hill.

    MATH  Google Scholar 

  42. Collin, R.E. (1986). The dyadic Green’s functions as an inverse operator, Radio Science, Vol. 21, pp. 883–890, Nov.—Dec.

    Article  Google Scholar 

  43. Pandofsky, W.K.H. and Phillips, M. (1962). Classical Electricity and Magnetism, Reading, MA: Addison-Wesley.

    Google Scholar 

  44. Amazigo, J.C. and Rubenfeld, L.A. (1980). Advanced Calculus, New York: Wiley.

    MATH  Google Scholar 

  45. Sternberg, W.J. and Smith, T.L. (1946). The Theory of Potential and Spherical Harmonics, Toronto: University of Toronto Press.

    Google Scholar 

  46. Champeney, D.C. (1987). A Handbook of Fourier Theorems, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  47. Mikhlin, S. G. (1970). Mathematical Physics, An Advanced Course, Amsterdam: North-Holland.

    MATH  Google Scholar 

  48. Elliott, R.S. (1981). Antenna Theory and Design, Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanson, G.W., Yakovlev, A.B. (2002). Electromagnetic Fundamentals. In: Operator Theory for Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3679-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3679-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2934-1

  • Online ISBN: 978-1-4757-3679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics