Skip to main content

Photonic Applications of Semiconductor-Doped Glasses

  • Chapter
Semiconductor Nanocrystals

Part of the book series: Nanostructure Science and Technology ((NST))

  • 490 Accesses

Abstract

The technical capability to produce structures in solids that are small and precise enough in dimension to be comparable to the Bohr radius of an electron is a relatively recent technological development. This effort began with the invention of a deposition technique called MBE (molecular beam epitaxy). From this technique came the first layered structures in GaAs where the layer thickness could be controlled to a dimension less than the Bohr radius, ħ 2 К / m e,h e 2 , where, К is the dielectric constant of the material, and me, h is the mass of the electron or hole. These precisely controlled layered structures gave birth to the “quantum well” devices that have played such an important role in the opto-electronics industry. The key property of the structure is the dependence of the energy levels on the dimension of the layers.. The term that applies to the effect where the physical size of the structure is smaller that the normal electron orbit is called “quantum confinement.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al. L. Efros, and A. L. Efros, Soy. Phys. Semicond 16 (7), 772–775 (1982).

    Google Scholar 

  2. L. E. Brus, J. Phs. Chem, 90, 2555, (1986).

    Google Scholar 

  3. H. Weller, H. Koch, U. Guterrez, and M. Henglein, Phys. Chem 88, 549, (1984).

    Google Scholar 

  4. Glass Color Filters“ CF-3 Coming Glass Works page 10, sharp cut filters, 1965.

    Google Scholar 

  5. R. J,. Araujo, and N. F. Borrelli, Photochromic glasses in “Optical Prop. of Glass,”, eds. D. R. Uhlmann, and N. J. Kreidl, Am Cer Soc., 1991.

    Google Scholar 

  6. H. S. Zhou, I. Honma, J. W. Haus, H. Sasabe, and H. Komiyama, J. Lum, 70(1–6), 21–34, (1996) and references contained.

    Google Scholar 

  7. D. J. Norris, Al. L. Efros, M. Rosen, and M. G. Bawendi, Phys. Rev. B, 53(24), 16 347–16 354 (1996).

    Google Scholar 

  8. M. L. Stiegerwald, A. P. Alivsatos, J. M. Gibson, T. D. Harris, P. Kortan, A. J. Muller, A.M. Thayer, T. M. Duncan, D.0 Douglass, and L. E. Brus, J. Am Chem Soc, 110, 3046, (1988).

    Article  Google Scholar 

  9. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem Phys 87, 7315, (1987).

    Article  CAS  Google Scholar 

  10. B. G. Potter, and J. H. Simmons, Phys. Rev. 37(18), 10 838, (1988).

    Google Scholar 

  11. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, A. I, Kudyravtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, JOSA-B, 10, 100, (1993).

    Article  CAS  Google Scholar 

  12. L. E. Brus, J. Chem. Phys, 80, 4403 (1984).

    Article  Google Scholar 

  13. A. I. Ekimov, Al. L Efros, and A. A. Onushchenko, Sol. State Comm, 56, 921, (1985).

    Article  CAS  Google Scholar 

  14. C. Murray, D. Norris, and M. Bawendi, J. Am Chem. Soc 115, 8706, (1993).

    Article  CAS  Google Scholar 

  15. F. W. Wise, Accounts of Chem Res. 33 (11), 773, (2000).

    Article  Google Scholar 

  16. P. Roussignol, D. Ricard, J. Lukisak, C. Flytzanis, JOSA-B 4, 5 (1987).

    Article  CAS  Google Scholar 

  17. I. M. Lifshitz, and V. V. Slyozov, JETP, 35, 331, (1959).

    Google Scholar 

  18. S. Schmitt-Rink, D. Miller, and D. Chemla, Phys. Rev. B, 35, 8113, (1987).

    CAS  Google Scholar 

  19. V. I. Klimov, “H ‘book on Nanostructured Materials and Nanotechnology, ed H. Nalwa, Academic Press 1998.

    Google Scholar 

  20. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, Appl. Phys. Lett., 71 (12) 53, (1997).

    Article  Google Scholar 

  21. V. I Klimov, Phys. Chem B 104 6112, (2000).

    Google Scholar 

  22. F. Hennenberger, J. Pulis, Ch. Spiegelberg, A. Schulzgen, H. Rossman, V. Jungnickel, and A. I. Ekimov, Semicond. Sc. Tech 8, A41 - A50, (1991).

    Article  Google Scholar 

  23. S. Park, R. Morgan, Y. Hu, M. Linberg, S. W. Koch, and N. Peyghambarian, JOSA B 7, 2097, (1990).

    Article  CAS  Google Scholar 

  24. D. W. Hall, and N. F. Borrelli, JOSA-B, 5, 1650 (1988).

    Article  CAS  Google Scholar 

  25. N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S. Kock, and M. Lindberg, IEEE JQE 25 (12), 2516, (1989).

    Article  CAS  Google Scholar 

  26. F de Rougemont, R. Frey, P. Roussignol, D. Ricard, and C. Flytzanis, Appl. Phys Lett 50 (23), 1619, (1987).

    Article  Google Scholar 

  27. N. F. Borrelli, and D. W. Smith, J. Non-Cryst. Sol 180, 25, (1994).

    Article  CAS  Google Scholar 

  28. K. Wundke, S. Potting, J. Auxier, A. Schulzgen, N. Peyghambaian, and N. F. Borrelli, Appl. Phys. Lett 76 (1), 10, (2000).

    Article  CAS  Google Scholar 

  29. G. Tamulaitis, V. Gulbinas, G. Kodis, A. Dementjev, and L. Valkunas, J. Appl. Phys 88 (1), 178 (2000).

    Article  CAS  Google Scholar 

  30. B. L. Justus, M. E. Seaver, J.A. Ruiler, and A.J. Campillo, Appl. Phys. Lett 57 (14), 1381, (1990).

    Article  CAS  Google Scholar 

  31. B. L. Justus, and J. A. Ruiler, Opt Mat. 2, 33, (1993).

    Article  Google Scholar 

  32. K. J. Blow, and D. Wood, JOSA 5(3), 629, (1988).

    Google Scholar 

  33. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Mansuchek, and J Aus de Au, IEEE Selected Topics in QE, 2 (3) 435, (1996).

    CAS  Google Scholar 

  34. A. M. Malyarevich, V. G. Savitski, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev. TBP.

    Google Scholar 

  35. J. E. Phil\ipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, Appl. Phys. B, 72, 175, (2001).

    Google Scholar 

  36. V. I. Klimov, A. A. Mihailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, SCIENCE, 290, 314, (2000).

    Article  CAS  Google Scholar 

  37. Y. Masumoto, and T. Kawamura, Appl. Phys. Lett 62 (3), 225, (1993).

    Article  CAS  Google Scholar 

  38. V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, and. Y. V. Vandyshev, Sol. State Comm 81 (3), 227, (1992).

    Article  CAS  Google Scholar 

  39. H. Giessen, U. Woggon, B. Fluegel, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, Opt. Lett,21(14) 1043, (1996).

    Google Scholar 

  40. U. Woggon, O. Wind, F. Gindele, E. Tsitishvili, and M. Muller, J. Lumin 70, 269, (1996).

    Article  CAS  Google Scholar 

  41. J. Butty, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Appl. Phys. Lett, 69 (21), 3224, (1996).

    Article  CAS  Google Scholar 

  42. Y. Z. Hu, S. W. Koch, and N. Peyghambarian, J. Lumin 70, 186, (1996).

    Article  Google Scholar 

  43. K. Wundke, J. Auxier, A. Schultzgen, and N. Peyghambarian, Appl. Phys. Lett 71 (20), 3060, (1999).

    Article  Google Scholar 

  44. J. Auxier, K. Wundke, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, Proc. CLEO ‘00 OSA Technical Digest Series 385 (2000).

    Google Scholar 

  45. D. Mayweather, M. G. F. Digonnet, and R. H. Pantell, J. Lightwave Tech., 14 (14), 60, (1996).

    Google Scholar 

  46. P. Horan, and W Blau, Semicond. Sci Techn 2, 382, (1987).

    Article  CAS  Google Scholar 

  47. R. H. Pantell and M. J. F. Digonnet, J. Lightwave, Tech 12 (1), 149, (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borrelli, N.F. (2003). Photonic Applications of Semiconductor-Doped Glasses. In: Efros, A.L., Lockwood, D.J., Tsybeskov, L. (eds) Semiconductor Nanocrystals. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3677-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3677-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3402-4

  • Online ISBN: 978-1-4757-3677-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics