Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 63))

  • 522 Accesses

Abstract

A new direction in the study of efficiency, which is now in developing, is the study of ε-efficiency or of other forms of approximative efficiency. In particular, the ε-efficiency is related to the study of ε-solutions in vector optimization problems. Begining with the paper of Loridan (1984) several concepts for approximately efficient solutions of a vector optimization problem were published in the last years. We mention the works by Németh (1986), Staib (1988), Valyi (1985), Gerth (Tammer) (1978), Tammer (1992), Tammer [l]-[3] (1993), Helbig e.a. (1992), Isac (1984, 1986), Gopfert and Tammer [1],[3] (1995), Göpfert and Tammer (1998) among others. This chapter is dedicated to the study of approximative efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop E and Phelps RR. ‘The support functionals of a convex set’.- In: Proc. Symp. on Math., Amer. Math. Soc., Providence, RI. 1962; 7: 27–35.

    Google Scholar 

  • Brezis H and Browder FE. A general principle on ordered set in nonlinear functional analysis. Adv. Math. 1976; 21: 777–787.

    Article  MathSciNet  Google Scholar 

  • Caristi J. Fixed point theorems for mappings satisfying inwardness condition. Trans. Amer. Math. Soc. 1976; 215: 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen GY and Huang XX. 1. A unified approach to the existing three types of variational principles for vector valued functions. Math. Meth. Oper. Res. 1998; 48: 349–357.

    Article  MATH  Google Scholar 

  • Chen GY, Huang XX and Hou SH. General Ekeland’s variational principle for set-valued mappings. J. Optim. Theory Appl. 2000; 106: 151–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen GY, Huang XX and Lee GM. “Equivalents of approximate variational principle for vector valued functions and applications”. Preprint, Academia Sinica, Institute of Systems Science, Beijing, 1997.

    Google Scholar 

  • Danes S, Hegedus M. and Medvegyev P. A general ordering and fixed point principle in complete metric space. Acta Sci. Math. (Szeged). 1983; 46: 381–388.

    MathSciNet  Google Scholar 

  • Ekeland I. 1. Sur les problemes variationals. C.R. Acad. Sci. Paris, 1972; 275: A1057–A1059.

    MathSciNet  Google Scholar 

  • Ekeland I. 2. On some variational principle. J. Math. Anal. Appl. 1974; 47: 324–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland I. 3. Nonconvex minimization problems. Bull. Amer. Math. Soc., 1979; 1(3): 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Ekeland I. 4. Some lemmas about dynamical systems. Math. Scan. 1983; 52: 262–268.

    MathSciNet  MATH  Google Scholar 

  • Ekeland I. 5. ‘The -variational principle revised’, (notes by S. Terracini). -In: Methods on Nonconvex Analysis, A. Cellina, ed., Lecture Notes in Mathematics, Berlin-Heidelberg: Springer-Verlag Nr.1446, 1990. — P. 1–15

    Chapter  Google Scholar 

  • Gerth (Tammer) Chr. “Naherungslosungen in der Vektoroptimierung”, Seminarbereichte der Sektion Mathematik der Humblodt-Universitat zu Berlin, 1978; 90: 67–76.

    MathSciNet  Google Scholar 

  • Gerth (Tammer) Chr. and Weidner P. Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 1990; 67: 297–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerth (Tammer) Chr. 1. Nichtkonvexe Dualitat in der Vektoroptimierung. Wiss. Zeitschrift TH., Leuna-Merseburg. 1983; 25(3): 357–364.

    MathSciNet  Google Scholar 

  • Gerth (Tammer) Chr. 2. Nichtkonvexe Trennungssatze und deren Anwendung in der Theorie der Vektoroptimierung. Seminarbereicht Nr. 80 der Sektion Mathematik der Humboldt Universitat zu Berlin, 1986, 19–31.

    Google Scholar 

  • Gerth (Tammer) Chr. and Ivanov E. Dualitat fur nichtkonvexe Vektoroptimierungsprobleme. Wiss. Zeitschrift der TH Ilmenau. 1985; 31: 61–81.

    Google Scholar 

  • Gopfert A and Tammer Chr. 1. A new maximal point theorem. J. Functional Anal. Appl. 1995; 14: 379–390.

    MathSciNet  Google Scholar 

  • Gopfert A and Tammer Chr. 2. “Maximal point theorems in product spaces and applications for multicriteria approximation problems”. Preprint Nr.26, Institute of Optimization and Stochastics, Martin-Luther Universitat, Halle-Wittenberg, Germany, 1998.

    Google Scholar 

  • Gopfert A and Tammer Chr. 3. -Approximate solutions and conical support points. A new maximal point theorem. Z. Angew. Math. Mech. 1995; 75: 595–596.

    Google Scholar 

  • Gopfert A, Trimmer Chr. and Zalinescu C. “Maximal point theorems in product spaces.” Preprint, Institute of Optimization and Stochastics, Martin-Luther Universitat, Halle-Wittenberg, Germany, 1999.

    Google Scholar 

  • Helbig S, Georgiev P, Pateva AD and Todorov M. ‘ε-Efficiency elements.’ Lecture on the Conference Mehrkriterielle Entscheidung, Fehrenbach, Germany, 1992.

    Google Scholar 

  • Henkel EC and Tammer Chr. 1. ε-Variational inequalities in partially ordered spaces. Optimization. 1996; 36: 105–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Henkel EC and Tammer Chr. 2. ε-Variational inequalities for vector approximation problems. Optimization. 1996; 38: 11–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyers DH, Isac G and Rassias TM. Topics in Nonlinear Analysis and Applications. Singapore, New Jersey, London, Hong-Kong: World Scientific, 1997.

    Book  MATH  Google Scholar 

  • Isac G. 1. Sur l’éxistence de l’optimum de Pareto. Rèv. Mat. Univ. Parma. 1983; (4)9: 303–325.

    MathSciNet  Google Scholar 

  • Isac G. 2. ‘The Ekeland’s principle and Pareto -efficiency’. — In: Multi-Objective Programming and Goal Programming, M. Timiz, ed. Lecture Notes in Econom. Math. Systems Nr.432, Springer-Verlag, 1996, 148–162.

    Chapter  Google Scholar 

  • Isac G. 3. ‘On Pareto efficiency. A general constructive existence principle’. (To appear in the volume: Combinatorial and Global Optimization, P.M. Pardalos, A. Migdalas and R. Burkard, eds.)

    Google Scholar 

  • Khan PQ, “On Caristi-Kirk’s theorem and Ekeland’s principle for Pareto extrema”. Preprint Nr. 357, Institute of Mathematics, Polish Academy of Science, 1986.

    Google Scholar 

  • Kutateladze SS. Convex ε-programming. Soviet Mathematics Doklady. 1979; 20: 1048–1050 (in Russian).

    MathSciNet  Google Scholar 

  • Loridan P. 1. ε-Solutions in vector minimization problems. J. Optim. Theory Appl. 1984; 42: 265–276.

    Article  MathSciNet  Google Scholar 

  • Loridan P. 2. Necessary conditions for ε-optimality. Math. Programming Study. 1982; 19.

    Google Scholar 

  • Németh AB. 1. Between Pareto efficiency and Pareto -efficiency. Optimization. 1989; 20: 615–637.

    Article  MathSciNet  MATH  Google Scholar 

  • Németh AB. 2. Near to minimality in ordered vector spaces. Mathematica (Cluj). 1981; 23(46): 239–243.

    MathSciNet  Google Scholar 

  • Németh AB. 3. “Summation criteria for regular cones with applicatons.” Babes-Bolyai Univ., Faculty of Math., Research Seminar, Preprint Nr.4, 1981, 99–124.

    Google Scholar 

  • Németh AB. 4. “Simultaneous transformation of the order and the topology by nonlinear operators.” Babes-Bolyai Univ., Faculty of Math., Research Seminar, Preprint Nr.1, 1984, 135–158.

    Google Scholar 

  • Németh AB. 5. A nonconvex vector minimization problem. Nonlinear Anal. Theory, Math. Appl. 1986;10: 669–678.

    Article  MATH  Google Scholar 

  • Phelps RR. 1. Support cones in Banach spaces and their applications. Advances in Math. 1974; 13: 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Phelps RR. 2. Convex Functions, Monotone Operators and Differentiability, 2nd ed., Lecture Notes in Math. Nr. 1364, Springer-Verlag, 1993.

    MATH  Google Scholar 

  • Staib T. On two generalization of Pareto minimality. J. Opt. Theory Appl. 1988; 59: 289–306.

    MathSciNet  MATH  Google Scholar 

  • Strodiot JJ, Nguyen VH and Heukenes N. “ε-Optimal solutions in nondifferenfciable convex programming and some related questions”. Faculté Universitaires de Namur, Belgium, Report Nr. 80/12, 1980.

    Google Scholar 

  • Takahashi W. ‘Existence theorems, generalized fixed point theorems for multivalued mappings’.-In: Fixed Point Theory and Applications, M.A. Thera and J.B. Baillon, eds. Logman, Notes in Mathematics Series 252, 1991.

    Google Scholar 

  • Tammer Chr. 1. ‘Existence results and necessary conditions for -efficient elements’. — In: Multicriteria Decision, Brosowski e.a., eds. Proceedings of the 14-th Meeting of the German Working Group “Mehrkriterielle Entscheidigung”, Frankfurt/Main- Bern: Lang-Verlag, 1993. — P.97–110.

    Google Scholar 

  • Tammer Chr. 2. ‘A variational principle and fixed point theorem’. Proceedings of the 16-th IFIP Conference on System Modelling and Optimization, Compiegne, France, 1993.

    Google Scholar 

  • Tammer Chr. 3. A variational principle and applications for vectorial control approximation problems. (To appear: Math. Journ. Univ. Bacau, Romania.)

    Google Scholar 

  • Tammer Chr. 4. A genaralization of Ekeland’s variational principle. Optimization. 1992: 25: 129–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Tammer Chr. 5. ‘Necessary conditions for approxiamtely efficient solutions of vector approximation’.- In: Proceedings of the 2nd Conference on Approximation and Optimization, Havana, Cuba, 1993.

    Google Scholar 

  • Tanino T and Sawaragi Y. Conjugate maps and duality in multiobjective optimization. J. Optim. Theory Appl. 1980; 31: 473–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Thierfelder J. Subdifferentiale and Vektoroptimierung. Wiss. Zeitschrift TH Ilmenau. 1991; 37(3): 89–100.

    MathSciNet  MATH  Google Scholar 

  • Valyi I. Approximate saddle-point theorems in vector optimization. J. Optim. Theory Appl. 1985; 55: 435–448.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isac, G., Bulavsky, V.A., Kalashnikov, V.V. (2002). Approximative Efficiency. In: Complementarity, Equilibrium, Efficiency and Economics. Nonconvex Optimization and Its Applications, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3623-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3623-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5223-3

  • Online ISBN: 978-1-4757-3623-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics