Skip to main content

Digital underwater voice communications

  • Chapter

Abstract

In many underwater activities, a voice link is an essential requirement for divers [1–9]. Although advanced digital systems for underwater acoustic data transmission and reception have been devised, this is not the case for through-water voice communications. Most commercially available systems use outdated analogue technology and therefore suffer practical limitations compared with the sophisticated digital telecommunications systems now available above the surface. One advantage of a digital system is that it enables private communication links between divers or between divers and the surface so that there is no unwanted cross-talk. Another advantage is that it can be used to transmit scientific data as well as voice information. In this chapter, we consider a new design methodology that includes the implementation of speech signal processing algorithms and the transmission and reception of speech in digital format. The main consideration in the design is to provide a diver with a comparable level of communications capability as is provided by a digital mobile telephone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woodward, B. “Underwater Telephony: Past, Present and Future,” Colloque De Physique, Colloque C2, No.2, pp. C2_591–C2_594(1990).

    Google Scholar 

  2. Baume, D., Godden, D. and Hipwell, J. “ Improving diver communications,” Underwater Systems Design, pp.21–23 (December 1979/January 1980).

    Google Scholar 

  3. McIntosh, W., “Underwater communications: An oil company viewpoint,” J. Soc. Underwater Technology, Vol.11, No.3, pp.14–26 (1985).

    MathSciNet  Google Scholar 

  4. Hicks, R.J. and Virr, L.E. “Underwater communications-a review,” Int. Conf. Divetech’81: The Way Ahead in Diving Technology, Society for Underwater Technology, London, (1981).

    Google Scholar 

  5. Bud, A.M.G., Holmes, J., White, I., Datham, R.J. and Kramer, J. “Improvements in diver communications” Report OTI 87 500, Dept. Energy, H.M. Stationary Office (1986).

    Google Scholar 

  6. Anderson, V.C., “Acoustic communication is better than none,” IEEE Spectrum, pp.63–68 (1970).

    Google Scholar 

  7. Berktay, H.O., Gazey, B. and Teer C.A. “Underwater communication past, present and future,” J. Sound Vib. Vol.7, Part 1, pp.62 – 70 (1968).

    Article  Google Scholar 

  8. Hollien, H., Coleman, R.F., and Rothman, H.B. “Evaluation of diver communication systems by a diver-to-diver technique,” IEEE Trans. Communication Tech., Vol. COM-19, No.4, pp.403–409 (1971).

    Article  Google Scholar 

  9. Webb, H.J., and Webb, J.R., “An underwater audio communicator,” IEEE Trans. Audio Electroacouctics, Vol.AU-14, No.3, pp.127–135 (1968).

    Google Scholar 

  10. Urick, R.J. Principles of Underwater Sound, McGraw-Hill, New York (1975).

    Google Scholar 

  11. Burdick, W.S. Underwater Acoustic System Analysis, Prentice-Hall, New Jersey (1984).

    Google Scholar 

  12. Coates, R.F.W. Underwater Acoustic Systems, Macmillan, London (1990).

    Google Scholar 

  13. Catipovic, J.A. “Performance limitations in underwater acoustic telemetry,” IEEE J. Oceanic Eng., Vol.OE-15, No.3, pp.205–216 (1990).

    Article  Google Scholar 

  14. Baggeroer, A.B. “ Acoustic telemetry — an overview,” IEEE J. Oceanic Eng., Vol.OE-9, No.4, pp.229–234 (1984).

    Article  Google Scholar 

  15. Jourdain, D., “Acoustical propagation analysis in shallow water,” Proc. 2nd European Conf. Underwater Acoustics, Vol.II, pp.781–786 (1994).

    Google Scholar 

  16. Owen, R.H., Smith, B.V. and Coates, R.F.W. “An experimental study of rough surface scattering and its effects on communication coherence,” in Proc. Oceans’94, pp.III.483–III.488 (1994).

    Google Scholar 

  17. Geller, B., Brossier, J.M., and Capellano, V., “Equalizer for high data rate transmission in underwater communications,” in Proc. Oceans’94, pp.I.302–I.306 (1994).

    Google Scholar 

  18. Geller, B., Capellano, V., Brossier, J.M., Essebbar, A. and Jourdain, G. “Equalizer for video rate transmission in multipath underwater communications,” IEEE J.Oceanic Eng, Vol.21, No. 2 (1996).

    Google Scholar 

  19. Proakis, J.G. “Adaptive equalization techniques for acoustic telemetry channels,” IEEE J. Oceanic Eng., Vol.OE-16, No.1, pp.21–31 (1991).

    Article  Google Scholar 

  20. Stojanovic, M. “Recent advances in high-speed underwater acoustic communications,” IEEE J.Oceanic Eng, Vol.21, No. 2, pp. 125–136 (1996).

    Article  Google Scholar 

  21. Tarbit, P.S.D, Howe, G.S., Hinton, O.R., Adams, A.E. and Sharif, B.S. “Development of a real-time adaptive equalizer for a high-rate underwater acoustic data communications link,” in Proc. Oceans’94, pp.I.307–I.312 (1994).

    Google Scholar 

  22. Bessios, A.G. and Caimi, F.M. “Multipath compensation for underwater acoustic communication,” in Proc. Oceans’94, pp.I.317–I.322 (1994).

    Google Scholar 

  23. Galvin, R. and Coates, R.F.W. “Analysis and performance of an underwater acoustic communications system and comparison with a stochastic model,” in Proc. Oceans’94, pp.III.478–III.482 (1994).

    Google Scholar 

  24. Billon, D. and Quellec, B. “Performance of high data rate acoustic underwater communication systems using adaptive beamforming and equalizing,” in Proc. Oceans’94, pp.III.507–III.512 (1994).

    Google Scholar 

  25. Henderson, G.B., Tweedy, A., Howe, G.S., Hinton, O., and Adams, A.E., “Investigation of adaptive beamformer performance and experimental verification of applications in high data rate digital underwater communications,” in Proc. Oceans’94, pp.I.296–I.301 (1994).

    Google Scholar 

  26. Mackie, R.D.L., and Smith, N. “Diver communications and helium speech unscrambling,” Underwater System Design, pp.19–21 (June/July 1983).

    Google Scholar 

  27. Mendel, L.L., Hamill, B.W., Crepeau, L.J. and Fallon, E. “ Speech intelligibility assessment in a helium environment,” J. Acoust. Soc. Am., Vol. 97, No. 1, pp. 628–636 (1995).

    Article  Google Scholar 

  28. Fant, G. and Sonesson, B. “Speech at high ambient air pressure,” in Speech Transmission Lab. Quart. Prog. and Status Report, STL-QPSR No. 2/1964, pp.9–21 (1964).

    Google Scholar 

  29. Fant, G. and Lindqvist, J. “II. Studies related to diver’s speech. A: Pressure and gas mixture effects on diver’s speech,” in Speech Transmission Lab. Quart. Prog. and Status Report STL-QPSR No. 2/1968, pp.7–17 (1968).

    Google Scholar 

  30. Richards, M.A. “Helium speech enhancement using the short-time Fourier transform,” IEEE Trans. on Acoust. Speech and Signal. Process. Vol.ASSP-30, No.6, pp.841–853 (1982).

    Article  Google Scholar 

  31. Jack, M. A. and Duncan, G. “The helium speech effect and electronic techniques for enhancing intelligibility in a helium-oxygen environment,” The Radio and Electronic Engineer, Vol.52, No.5, pp.211–223 (1982).

    Article  Google Scholar 

  32. Mackie, R.D.L., and Smith, N. “Diver communications and helium speech unscrambling,” Underwater System Design, pp.19–21 (June/July 1983).

    Google Scholar 

  33. Beet, S.W. and Goodyear, C.C. “Helium speech processor using linear prediction,” Electronics Letters, Vol.19, No.11, pp.408–410 (1983).

    Article  Google Scholar 

  34. Brandt, J.F. and Hollien, H. “ Underwater hearing thresholds in man as a function of water depth,” J. Acoust. Soc. Am., Vol.46, No.4, pp.893–894 (1969).

    Article  Google Scholar 

  35. Brandt, J.F. and Hollien, H. “ Underwater hearing thresholds in man,” J. Acoust. Soc. Am., Vol.42, No.5, pp.966–971 (1967).

    Article  Google Scholar 

  36. Wong, W.T.K., Mack, R.M., Cheetham, B.M.G., and Sun, X.Q. “Low rate speech coding for telecommunications,” BT Technol. J. Vol.14, No.1, pp.28–43 (1996).

    Google Scholar 

  37. Barret, P.A., Voelcker, R.M., and Lewis, A.V., “Speech transmission over mobile radio channels,” BT Tech. J., Vol.14, No.1, pp.45–55 (1996).

    Google Scholar 

  38. Koo, B. and Gibson, J.D. “ Experimental comparison of all-pole, all-zero and polezero predictors for ADPCM speech coding,” IEEE Trans. Commun., Vol.Com-34, No.3, pp.285–290 (1986).

    Google Scholar 

  39. Bonnet, M., Macchi, O. and Saidane, M.J. “ Theoretical analysis of the ADPCM CCITT algorithm,” IEEE Trans. Commun., Vol.38, No.6, pp.847–858 (1990).

    Article  Google Scholar 

  40. Sherif, M.H., Bowker, D.O., Bertocci, G., Orford, B.A., and Mariano, G.A. “Overview and performance of CCITT/ANSI embedded ADPCM algorithms,” IEEE Trans. Commun., Vol.41, No.2, pp.391–399 (1993).

    Article  MATH  Google Scholar 

  41. Spanias, S.A. “Speech coding: A tutorial review,” Proc. IEEE, Vol.82, No. 10, pp.1541–1582 (1994).

    Article  Google Scholar 

  42. Jayant, S.N. “Coding speech at low bit rates,” IEEE Spectrum, pp.58–63 (1986).

    Google Scholar 

  43. Carmody, J. and Rothweiler, J. “Speech coding at 800 and 400 bps,” Electrical Commun. pp.260–265 (1986).

    Google Scholar 

  44. Benvenuto, N., Bertocci, G., Daumer, W.R. and Sparrell, D.K. “ The 32-kb/s ADPCM coding standard,” AT&T Tech. J., Vol.65, pp.12–19 (1986).

    Google Scholar 

  45. Lafuente, L.M. “Adaptive differential pulse code modulation for low bit rate transmission of speech signals,” Electrical Commun., Vol.58, No.2, pp.225–229. (1983).

    Google Scholar 

  46. Tremain, T.E. “ The government standard linear predictive coding,” Speech Technology, Vol.1, pp 40–49 (1982).

    Google Scholar 

  47. Woodward, B. and Sari, H. “Digital underwater acoustic voice communications,” IEEE J.Oceanic Eng, Vol.21, No. 2, pp. 181–192 (1996).

    Article  Google Scholar 

  48. Samuel, D.S. and Ruth, A.D, Signal Processing Algorithms, Prentice-Hall, New Jersey, (1989).

    Google Scholar 

  49. Markel, J.D. and Gray, A.H, Linear Prediction of Speech, Springer-Verlag, Berlin (1982).

    Google Scholar 

  50. Makhoul, J. “Linear Prediction: A tutorial review,” Proc. IEEE, Vol.63, No.4, pp.561–580 (1975).

    Article  Google Scholar 

  51. Rabiner, L.R. and Schafer, R.W, Digital Processing of Speech Signals, Prentice-Hall, New Jersey (1978).

    Google Scholar 

  52. Deller, Jr. J.R., Proakis, J.G., and Hansen, J.H.L, Discrete-Time Processing of Speech Signals, Macmillan Publishing Comp., New York (1993).

    Google Scholar 

  53. Saito, S. and Nakata, K, Fundamentals of Speech Signal Processing, Academic Press, Tokyo (1985).

    Google Scholar 

  54. Flanagan, J.L., Ishizaka, K., and Shipley, K.L. “ Synthesis of speech from a dynamic model of the vocal tract,” The Bell System Tech. J., pp.485–506 (1975).

    Google Scholar 

  55. Krubsack, D.A. and Niederjohn, R.J. “ An autocorrelation pitch detector and voicing decision with confidence measures developed for noise-corrupted speech,” IEEE Trans. Signal Proc., Vol.39, No.2, pp.319–329 (1991).

    Article  Google Scholar 

  56. Tsakalos, N. and Zigouris, E. “ An investigation of failures and comparison of correlation measurement pitch trackers and pre-processing filters,” Int. J. Electronics, Vol.75, No.2, pp.269–283 (1993).

    Article  Google Scholar 

  57. Gold, B. and Rabiner, L.R. “ Parallel processing techniques for estimating pitch periods of speech in the time domain,” J. Acoust. Soc. Am., Vol.46, pp.442–448 (1969).

    Article  Google Scholar 

  58. Sukkar, R.A., Locicero, J.L. and Picone, J.W. “ Design and implementation of a robust pitch detector based on a parallel processing technique,” IEEE J. Select. Areas Commun., Vol.6. No.2., pp.441–450(1988).

    Article  Google Scholar 

  59. Rabiner, L.R. “On the use of autocorrelation Analysis for pitch detection,” IEEE Trans. Acoust., Speech, and Sig. Proc., Vol.ASSP-25, No.1, pp.24–33 (1977)

    Article  Google Scholar 

  60. Ross, M.J. “ Average magnitude difference function pitch extractor,” IEEE Trans. Acoust., Speech, Sig. Proc., Vol.ASSP-22, pp.353–362 (1974).

    Article  Google Scholar 

  61. Tsakalos, N., and Zigouris, E. “ Threshold based magnitude difference function pitch determination algorithm,” Int. J. Electronics, Vol.71, No.1, pp.13–28 (1991).

    Article  Google Scholar 

  62. Markel, J.D. “The SIFT algorithm for fundamental frequency estimation,” IEEE Trans. Audio Electroacoust., Vol.AU-20, pp.367–377 (1972).

    Article  Google Scholar 

  63. Campell, P.J., and Tremain, E.T. “Voiced/unvoiced classification of speech with applications to the U.S. Government LPC-10E algorithm,” Int. Conf. Acoustic, Speech and Signal Proc., pp.473–476 (1986).

    Google Scholar 

  64. Ifeachor, C.E., and Jervis, B.W., Digital Signal Processing- A Practical Approach, Addison-Wesley, Wokingham (1993).

    Google Scholar 

  65. Buzo, A., Gray, A.H., Gray, M.R. and Markel, J.D. “Speech Coding Based upon Vector Quantization,” IEEE Trans. Acoustic, Speech, Sig. Proc.,Vol. ASSP-28, pp.562–574 (1980).

    Article  MathSciNet  Google Scholar 

  66. Gray, A.H, Gray, R.M., and Markel, J.D. “Comparison of optimal quantization of speech reflection coefficients,” IEEE Trans. Acoustic, Speech, Sig. Proc.,Vol. ASSP-25, No.1, pp.9–21 (1977).

    Article  Google Scholar 

  67. Itakura, F. “Line spectrum representation of linear predictive coefficients of speech signals,” J. Acoust. Soc. Am., Vol.57, pp.535 (A) (1975).

    Article  Google Scholar 

  68. Lepschy, A., Mian, G.A., and Viaro, U. “A note on line spectral frequencies,” IEEE Trans. Acoustic, Speech, Sig. Proc., Vol.36, No.8, pp.1355–1357 (1988).

    Article  Google Scholar 

  69. “Details to assist in implementation of Federal Standard 1016 CELP,” National Communications System, Tech. Bulletin, 92–1 (1992).

    Google Scholar 

  70. Brock, D.C., Bateman, S.C. and Woodward, B. “ Underwater acoustic transmission of low-rate digital data,” Ultrasonics, Vol.24, pp.183–188 (1986).

    Article  Google Scholar 

  71. Andrews, R.S. and Turner, L.F. “On the performance of underwater data transmission system using amplitude shift keying techniques,” IEEE Trans. on Sonic and Ultrasonics, Vol.SU-23, pp.64–71 (1976).

    Article  Google Scholar 

  72. Dawoud, M.M., Halawani, T.U. and Abdul jauwad, S.H. “Experimental realisation of ASK underwater digital acoustic communications system using error correcting codes,” Int. J. Electronics, Vol.72, No.2, pp.183–196 (1992).

    Article  Google Scholar 

  73. El-Hennawey, M.S. and Shehadah, W.H. “Non-coherent FSK receiver for underwater communications,” Int. J. Electronics, Vol.79, No.3, pp.265–280 (1995).

    Article  Google Scholar 

  74. Catipovic, J., Baggeroer, A.B., Von Der Heydt, K. and Koelsch, D. “Design and performance analysis of a digital acoustic telemetry system for the short-range underwater channel,” IEEE J.Oceanic Eng, Vol. OE-9, pp.252–252 (1984).

    Google Scholar 

  75. Woodward, B. and Bateman, S.C. “Diver monitoring by ultrasonic digital data telemetry,” Med. Eng. Phys. Vol. 16, pp.278–286 (1994).

    Article  Google Scholar 

  76. Thompson, D., Neasham, J., Sharif, B.S., Hinton, O.R., Adams, A.E., “Performance of coherent PSK receivers using adaptive combining and beamforming for long range acoustic telemetry,” 3rd European Conf. Underwater Acoustics, pp.747–752 (1996).

    Google Scholar 

  77. Falahati, A., Bateman, S.C. and Woodward, B. “ Underwater acoustic channel models for 4800bps QPSK signals,” IEEE J. Oceanic Eng., Vol.OE-16, No.1, pp.12–20 (1991).

    Article  Google Scholar 

  78. Stojanovic, M., Catipovic, J.A. and Proakis, J.G. “Phase-coherent digital communication for underwater acoustic channels,” IEEE J. Oceanic Eng., Vol.19, No.1, pp.100–111 (1994).

    Article  Google Scholar 

  79. Goalic, A., Labat, J., Trubuil, J., Saoudi, S. and Riouaten, D. “Toward a digital acoustic underwater phone,” in Proc. Oceans’94, pp.III.489–III.494 (1994).

    Google Scholar 

  80. Habib Istepanian, R.Sh., Use of Microcontrollers for Diver Monitoring by Underwater Acoustic Biotelemetry in Multipath Environments, Ph.D. Thesis, Loughborough University (1994).

    Google Scholar 

  81. Riter, S. and Boatrigth, P.A. “Design considerations for a pulse position modulation underwater acoustic communication system”, Digest IEEE Conf. Eng. Oceanic Environment, pp.21–24 (1970).

    Google Scholar 

  82. Proakis, J.G., and Salehi, M., Communication Systems Engineering, Prentice-Hall, New Jersey (1994).

    MATH  Google Scholar 

  83. Sear, J.K. “Standardisation of Sonar Communications,” Int. Conf. Divetech’81: The Way Ahead in Diving Technology, Society for Underwater Technology, London, (1981).

    Google Scholar 

  84. Mulcahy, M., “A through-water diver communication system,” Sea Technology, Vol.20, No.8, pp.27–29 (1979)

    Google Scholar 

  85. Gazey, B.K. and Morris, J.C., “An underwater acoustic telephone for free-swimming divers,” Electronic Eng., pp.364–368 (1964).

    Google Scholar 

  86. Peck, M.J. “Wireless underwater communications past, present, and future,” Sea Technology, pp.61–65 (1992).

    Google Scholar 

  87. Overfield, T. “ Modern Through-Water Diver Communications,” Underwater Systems Design, pp.8–13 (March/April 1988).

    Google Scholar 

  88. Clark, A. “Diver communications- The case for Single Sideband,” Underwater Systems Design, pp.16–18 (January 1989).

    Google Scholar 

  89. Ling, G. and Cagliardi, R.M. “ Slot synchronization in optical PPM communications,” IEEE Trans. Commun., Vol.COM-34, No.12, pp.1202–1208 (1986).

    Article  Google Scholar 

  90. Georgehiades, C.N. “Optimum joint slot and symbol synchronization for optical PPM channel,” IEEE Trans. Commun., Vol.COM-35, No.6, pp.518–527 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sari, H., Woodward, B. (2002). Digital underwater voice communications. In: Istepanian, R.S.H., Stojanovic, M. (eds) Underwater Acoustic Digital Signal Processing and Communication Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3617-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3617-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4882-3

  • Online ISBN: 978-1-4757-3617-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics