Skip to main content

High-Speed Underwater Acoustic Communications

  • Chapter

Abstract

Underwater acoustic communications are a rapidly growing field of research and engineering, driven by the expansion of applications which require underwater data transmission without wired connections. In this chapter, we explore the problems of underwater acoustic communications in three parts. The first part presents an overview of modern applications in underwater data transmission and today’s achievements in this area. System requirements are reviewed, and propagation characteristics of underwater acoustic channels are given. It is shown that the majority of underwater acoustic channels are severely band-limited, with signal distortions depending on the link configuration, and ranging from benign to extreme ones caused by time-varying multipath propagation and signal phase variations. Examples of existing systems are given, with emphasis on the methods used for intersymbol interference mitigation. Most of these systems use noncoherent or a differentially coherent signal modulation and detection methods. Phase-coherent detection, which offers better efficiency in bandwidth utilization, is the subject of the second part of this chapter. In this part, the design of high-speed digital communication systems, which rely on powerful equalization and multiple sensor signal processing methods is treated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Brekhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics, New York: Springer, 1982.

    Google Scholar 

  2. A. Quazi and W. Konrad, “Underwater acoustic communications,” IEEE Comm. Magazine, pp. 24–29, Mar. 1982.

    Google Scholar 

  3. J. Catipovic, “Performance limitations in underwater acoustic telemetry,” IEEE J. Oceanic Eng. , vol. 15, pp. 205–216, July 1990.

    Article  Google Scholar 

  4. A. Baggeroer, “Acoustic telemetry — an overview,” IEEE J. Oceanic Eng. , vol. 9, pp. 229–235, Oct. 1984.

    Article  Google Scholar 

  5. M. Stojanovic “Recent advances in high rate underwater acoustic communications, IEEE J. Oceanic Eng. , pp. 125–136, Apr. 1996. Acoustics,” Ph. D. thesis, Northeastern University, Boston, MA, Sept. 1993.

    Google Scholar 

  6. J. Catipovic, M. Deffenbaugh, L. Freitag and D. Frye, “An acoustic telemetry system for deep ocean mooring data acquisition and control,” in Proc. OCEANS’89, pp. 887–892, Seattle, Washington, Oct. 1989.

    Chapter  Google Scholar 

  7. S. Chappell et al. , “Acoustic communication between two autonomous underwater vehicles,” in Proc. 1994 Symposium on A UV Technology, pp. 462–469, Cambridge, MA, 1994.

    Google Scholar 

  8. S. Coatelan and A. Glavieux, “Design and test of a multicarrier transmission system on the shallow water acoustic channel,” in Proc. OCEANS’94, pp. III. 472-III. 477, Brest, France, Sept. 1994.

    Google Scholar 

  9. A. Kaya and S. Yauchi, “An acoustic communication system for subsea robot,” in Proc. OCEANS’89, pp. 765–770, Seattle, Washington, Oct. 1989.

    Chapter  Google Scholar 

  10. M. Suzuki and T. Sasaki, “Digital acoustic image transmission system for deep sea research submersible,” in Proc. OCEANS’92, pp. 567–570, Newport, RI, Oct. 1992.

    Google Scholar 

  11. G. Ayela, M. Nicot and X. Lurton, “New innovative multimodulation acoustic communication system,” in Proc. OCEANS’94, pp. I. 292-I. 295, Brest, France, Sept. 1994.

    Google Scholar 

  12. A. Goalic et al., “Toward a digital acoustic underwater phone,” in Proc. OCEANS’94, pp. III. 489–III. 494, Brest, France, Sept. 1994.

    Google Scholar 

  13. B. Woodward and H. Sari, “Digital underwater voice communications,” IEEE J. Oceanic Eng. , vol. 21, pp. 181–192, Apr. 1996.

    Article  Google Scholar 

  14. D. F. Hoag, V. K. Ingle and R. J. Gaudette, “Low-Bit-Rate Coding of Underwater Video Using Wavelet-Based Compression Algorithms,” IEEE J. Oceanic Eng. , vol. 22, pp. 393–400, Apr. 1997.

    Article  Google Scholar 

  15. J. Fischer et al. , “A high rate, underwater acoustic data communications transceiver,” in Proc. OCEANS’92, pp. 571–576, Newport, RI, Oct. 1992.

    Google Scholar 

  16. R. F. W. Coates, M. Zheng and L. Wang, “BASS 300 PARACOM: A “model” underwater parametric communication system,” IEEE J. Oceanic Eng. , vol. 21, pp. 225–232, Apr. 1996.

    Article  Google Scholar 

  17. G. S. Howe et al. , “Sub-sea remote communications utilising an adaptive receiving beamformer for multipath suppression,” in Proc. OCEANS’94, pp. I. 313–I. 316, Brest, France, Sept. 1994.

    Google Scholar 

  18. M. Stojanovic, J. A. Catipovic and J. G. Proakis, “Phase coherent digital communications for underwater acoustic channels,” IEEE J. Oceanic Eng. , vol. 19, pp. 100–111, Jan. 1994.

    Article  Google Scholar 

  19. M. Sto janovic, J. A. Catipovic and J. G. Proakis, “Adaptive multichannel combining and equalization for underwater acoustic communications,” Journal of the Acoustical Society of America, vol. 94 (3), Pt. 1, pp. 1621–1631, Sept. 1993.

    Article  Google Scholar 

  20. M. Stojanovic, J. A. Catipovic and J. G. Proakis, “Reduced-complexity multichannel processing of underwater acoustic communication signals,” Journal of the Acoustical Society of America, vol. 98 (2), Pt. 1, pp. 961–972, Aug. 1995.

    Article  Google Scholar 

  21. M. Stojanovic, J. G. Proakis and J. A. Catipovic, “Performance of a high rate adaptive equalizer on a shallow water acoustic channel,” J. Acoust. Soc. Amer. , vol. 100 (4), Pt. 1, pp. 2213–2219, Oct. 1996.

    Article  Google Scholar 

  22. M. Johnson, L. Freitag and M. Stojanovic, “Improved Doppler Tracking and Correction for Underwater Acoustic Communication,” in Proc. ICASSP’97, vol 1, pp. 575–578, Munich, Germany, April, 1997.

    Google Scholar 

  23. H. Kobayashi, “Simultaneous adaptive estimation and decision algorithms for carrier modulated data transmission systems,” IEEE Trans. Comm. vol. COM-19, pp. 268–280, June 1971.

    Article  Google Scholar 

  24. J. Proakis, Digital Communications, New York: McGraw-Hill, 1995.

    Google Scholar 

  25. S. Haykin, Adaptive Filter Theory, New Jersey: Prentice Hall 1986.

    Google Scholar 

  26. D. Slock and T. Kailath, “Numerically stable fast transversal filters for recursive least squares adaptive filtering,” IEEE Trans. Sig. Proc. , vol. SP-39, pp. 92–114, Jan. 1991.

    Article  Google Scholar 

  27. D. Slock, L. Chisci, H. Lev-Ari and T. Kailath, “Modular and numerically stable fast transversal filters for multichannel and multiexperiment RLS,” IEEE Trans. Sig. Proc. , Vol. 40, pp. 784–802, Apr. 1992.

    Article  Google Scholar 

  28. F. Hsu, “Square root Kalman filtering for high-speed data received over fading dispersive HF channels,” IEEE Trans. Inform. Theory, Vol. IT-28, pp. 753–763, Sept. 1982.

    Article  Google Scholar 

  29. B. Geller, V. Capellano, J. -M. Brossier, A. Essebar and G. Jourdain, “Equalizer for video rate transmission in multipath underwater communications,” IEEE J. Oceanic Eng. , vol. 21, pp. 150–155, Apr. 1996.

    Article  Google Scholar 

  30. F. Ling and J. G. Proakis, “Adaptive lattice decision-feedback equalizers— their performance and application to time-variant multipath channels,” IEEE Trans. Commun. , vol. 33, pp. 348–356, Apr. 1985.

    Article  Google Scholar 

  31. M. Kocic, D. Brady and M. Stojanovic, “Sparse equalization for real-time digital underwater acoustic communications,” in Proc. OCEANS’95, San Diego, CA, Oct. 1995.

    Google Scholar 

  32. J. Catipovic, M. Johnson and D. Adams, “Noise cancelling performance of an adaptive receiver for underwater communications,” in Proc. 1994 Symposium on A UV Technology, pp. 171–178, Cambridge, MA, July 1994.

    Google Scholar 

  33. M. Stojanovic and Z. Zvonar, “Multichannel processing of broadband multiuser communication signals in shallow water acoustic channels,” IEEE J. Oceanic Eng. , pp. 156–166, Apr. 1996.

    Google Scholar 

  34. M. Johnson, D. Herold and J. Catipovic, “The design and performance of a compact underwater acoustic network node,” in Proc. OCEANS’94, pp. III. 467–471, Brest, France, Sept. 94.

    Google Scholar 

  35. M. Johnson, “Utility Acoustic Modem,” Technical Report, Woodshole Oceanographic Institution, Jan. 1997.

    Google Scholar 

  36. J. Talavage, T. Thiel and D. Brady, “An efficient store-and-forward protocol for a shallow water acoustic local area network,” in Proc. OCEANS’94, Brest, France, Sept. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stojanovic, M. (2002). High-Speed Underwater Acoustic Communications. In: Istepanian, R.S.H., Stojanovic, M. (eds) Underwater Acoustic Digital Signal Processing and Communication Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3617-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3617-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4882-3

  • Online ISBN: 978-1-4757-3617-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics